
 ParaSoft Corporation, 1992
User’s Guide
Version 6.1

UNIX

Parasoft Corporation
2031 S. Myrtle Ave.
Monrovia, CA 91016
Phone: (888) 305-0041
Fax: (626) 305-9048
E-mail: info@parasoft.com
URL: www.parasoft.com

PARASOFT END USER
LICENSE AGREEMENT
REDISTRIBUTION NOT PERMITTED
This Agreement has 3 parts. Part I applies if you have not purchased a license to
the accompanying software (the "SOFTWARE"). Part II applies if you have
purchased a license to the SOFTWARE. Part III applies to all license grants. If
you initially acquired a copy of the SOFTWARE without purchasing a license and
you wish to purchase a license, contact Parasoft Corporation ("PARASOFT"):
(626) 305-0041
(888) 305-0041 (USA only)
(626) 305-9048 (Fax)
info@parasoft.com
http://www.parasoft.com

PART I -- TERMS APPLICABLE WHEN LICENSE FEES NOT (YET)
PAID GRANT.

DISCLAIMER OF WARRANTY.
Free of charge SOFTWARE is provided on an "AS IS" basis, without warranty of
any kind, including without limitation the warranties of merchantability, fitness for a
particular purpose and non-infringement. The entire risk as to the quality and
performance of the SOFTWARE is borne by you. Should the SOFTWARE prove
defective, you and not PARASOFT assume the entire cost of any service and
repair. This disclaimer of warranty constitutes an essential part of the agreement.
SOME JURISDICTIONS DO NOT ALLOW EXCLUSIONS OF AN IMPLIED
WARRANTY, SO THIS DISCLAIMER MAY NOT APPLY TO YOU AND YOU MAY
HAVE OTHER LEGAL RIGHTS THAT VARY BY JURISDICTION.

PART II -- TERMS APPLICABLE WHEN LICENSE FEES PAID

GRANT OF LICENSE.
PARASOFT hereby grants you, and you accept, a limited license to use the
enclosed electronic media, user manuals, and any related materials (collectively
called the SOFTWARE in this AGREEMENT). You may install the SOFTWARE in
only one location on a single disk or in one location on the temporary or
permanent replacement of this disk. If you wish to install the SOFTWARE in
multiple locations, you must either license an additional copy of the SOFTWARE
from PARASOFT or request a multi-user license from PARASOFT. You may not
transfer or sub-license, either temporarily or permanently, your right to use the
SOFTWARE under this AGREEMENT without the prior written consent of
PARASOFT.

LIMITED WARRANTY.
PARASOFT warrants for a period of thirty (30) days from the date of purchase,
that under normal use, the material of the electronic media will not prove
defective. If, during the thirty (30) day period, the software media shall prove
defective, you may return them to PARASOFT for a replacement without charge.
THIS IS A LIMITED WARRANTY AND IT IS THE ONLY WARRANTY MADE BY
PARASOFT. PARASOFT MAKES NO OTHER EXPRESS WARRANTY AND NO
WARRANTY OF NONINFRINGEMENT OF THIRD PARTIES' RIGHTS. THE
DURATION OF IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION,
WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR A
PARTICULAR PURPOSE, IS LIMITED TO THE ABOVE LIMITED WARRANTY
PERIOD; SOME JURISDICTIONS DO NOT ALLOW LIMITATIONS ON HOW
LONG AN IMPLIED WARRANTY LASTS, SO LIMITATIONS MAY NOT APPLY
TO YOU. NO PARASOFT DEALER, AGENT, OR EMPLOYEE IS AUTHORIZED
TO MAKE ANY MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS
WARRANTY.
If any modifications are made to the SOFTWARE by you during the warranty
period; if the media is subjected to accident, abuse, or improper use; or if you
violate the terms of this Agreement, then this warranty shall immediately be
terminated. This warranty shall not apply if the SOFTWARE is used on or in
conjunction with hardware or software other than the unmodified version of
hardware and software with which the SOFTWARE was designed to be used as
described in the Documentation. THIS WARRANTY GIVES YOU SPECIFIC
LEGAL RIGHTS, AND YOU MAY HAVE OTHER LEGAL RIGHTS THAT VARY
BY JURISDICTION.

YOUR ORIGINAL ELECTRONIC MEDIA/ARCHIVAL COPIES.
The electronic media enclosed contain an original PARASOFT label. Use the
original electronic media to make "back-up" or "archival" copies for the purpose of
running the SOFTWARE program. You should not use the original electronic
media in your terminal except to create the archival copy. After recording the
archival copies, place the original electronic media in a safe place. Other than
these archival copies, you agree that no other copies of the SOFTWARE will be
made.

TERM.
This AGREEMENT is effective from the day you install the SOFTWARE and
continues until you return the original SOFTWARE to PARASOFT, in which case
you must also certify in writing that you have destroyed any archival copies you
may have recorded on any memory system or magnetic, electronic, or optical
media and likewise any copies of the written materials.

CUSTOMER REGISTRATION.
PARASOFT may from time to time revise or update the SOFTWARE. These
revisions will be made generally available at PARASOFT's discretion. Revisions
or notification of revisions can only be provided to you if you have registered with
a PARASOFT representative or on the Parasoft Web site. PARASOFT's customer
services are available only to registered users.

PART III -- TERMS APPLICABLE TO ALL LICENSE GRANTS

SCOPE OF GRANT.

DERIVED PRODUCTS.
Products developed from the use of the SOFTWARE remain your property. No
royalty fees or runtime licenses are required on said products.

PARASOFT'S RIGHTS.
You acknowledge that the SOFTWARE is the sole and exclusive property of
PARASOFT. By accepting this agreement you do not become the owner of the
SOFTWARE, but you do have the right to use the SOFTWARE in accordance with
this AGREEMENT. You agree to use your best efforts and all reasonable steps to
protect the SOFTWARE from use, reproduction, or distribution, except as
authorized by this AGREEMENT. You agree not to disassemble, de-compile or
otherwise reverse engineer the SOFTWARE.

SUITABILITY.
PARASOFT has worked hard to make this a quality product, however PARASOFT
makes no warranties as to the suitability, accuracy, or operational characteristics
of this SOFTWARE. The SOFTWARE is sold on an "as-is" basis.

EXCLUSIONS.
PARASOFT shall have no obligation to support SOFTWARE that is not the then
current release.

TERMINATION OF AGREEMENT.
If any of the terms and conditions of this AGREEMENT are broken, this
AGREEMENT will terminate automatically. Upon termination, you must return the
software to PARASOFT or destroy all copies of the SOFTWARE and
Documentation. At that time you must also certify, in writing, that you have not
retained any copies of the SOFTWARE.

LIMITATION OF LIABILITY.
You agree that PARASOFT's liability for any damages to you or to any other party
shall not exceed the license fee paid for the SOFTWARE.
PARASOFT WILL NOT BE RESPONSIBLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE
OF THE SOFTWARE ARISING OUT OF ANY BREACH OF THE WARRANTY,
EVEN IF PARASOFT HAS BEEN ADVISED OF SUCH DAMAGES. THIS
PRODUCT IS SOLD "AS-IS".
SOME STATES DO NOT ALLOW THE LIMITATION OR EXCLUSION OF
LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE
ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU. YOU MAY
ALSO HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

ENTIRE AGREEMENT.
This Agreement represents the complete agreement concerning this license and
may be amended only by a writing executed by both parties. THE ACCEPTANCE
OF ANY PURCHASE ORDER PLACED BY YOU IS EXPRESSLY MADE
CONDITIONAL ON YOUR ASSENT TO THE TERMS SET FORTH HEREIN,
AND NOT THOSE IN YOUR PURCHASE ORDER. If any provision of this
Agreement is held to be unenforceable, such provision shall be reformed only to
the extent necessary to make it enforceable. This Agreement shall be governed
by California law (except for conflict of law provisions).
All brand and product names are trademarks or registered trademarks of their
respective holders.

Copyright 1993-2002
Parasoft Corporation
2031 South Myrtle Avenue
Monrovia, CA 91016
Printed in the U.S.A, February 7, 2003

Table of Contents

Introduction
Welcome! ...1
Insure++ Installation, Startup, and Licensing6
Contacting Parasoft..15

Getting Started
Running Insure++...16

Using Insure++
Insure++ ...33
Chaperon (Linux x86 Only) ..52
Reports...66
Insra ...84
Selective Checking...101
Interacting with Debuggers ..102
Tracing ...108
Signals ...111

Inuse
Working With Inuse ..112

TCA
Working With TCA..138

Reference
Configuration Options .. 162
Memory Overflow... 191
Insure++ API .. 193

Error Codes
Error Codes.. 197
ALLOC_CONFLICT ... 204
BAD_CAST .. 207
BAD_DECL .. 209
BAD_FORMAT .. 212
BAD_INTERFACE ... 217
BAD_PARM ... 219
COPY_BAD_RANGE... 224
COPY_DANGLING .. 226
COPY_UNINIT_PTR.. 228
COPY_WILD.. 230
DEAD_CODE... 232
DELETE_MISMATCH.. 235
EXPR_BAD_RANGE ... 238
EXPR_DANGLING .. 240
EXPR_NULL .. 242
EXPR_UNINIT_PTR .. 244
EXPR_UNRELATED_ PTRCMP ... 246
EXPR_UNRELATED_ PTRDIFF ... 248
EXPR_WILD .. 250
FREE_BODY ... 253
FREE_DANGLING... 255
FREE_GLOBAL ... 257
FREE_LOCAL.. 259
FREE_UNINIT_PTR .. 261
FREE_WILD .. 263
FUNC_BAD.. 265
FUNC_NULL.. 267
FUNC_UNINIT_PTR.. 269
INSURE_ERROR .. 271
INSURE_WARNING .. 272
LEAK_ASSIGN .. 274

LEAK_FREE ..276
LEAK_RETURN ...279
LEAK_SCOPE ...281
PARM_BAD_RANGE...283
PARM_DANGLING ..286
PARM_NULL..289
PARM_UNINIT_PTR..292
PARM_WILD..294
READ_BAD_INDEX...298
READ_DANGLING ..300
READ_NULL ..302
READ_OVERFLOW...304
READ_UNINIT_MEM...311
READ_UNINIT_PTR ..315
READ_WILD ..317
RETURN_DANGLING..320
RETURN_FAILURE ...322
RETURN_INCONSISTENT..324
UNUSED_VAR...327
USER_ERROR ..330
VIRTUAL_BAD...332
WRITE_BAD_INDEX ...336
WRITE_DANGLING...338
WRITE_NULL ..340
WRITE_OVERFLOW ...342
WRITE_UNINIT_PTR...344
WRITE_WILD...346

Index
Index ..349

Welcome!
IntroductionWelcome!
C and C++ developers have a unique problem: many errors in their code
don't manifest themselves during testing. Code with subtle problems such
as memory corruption may run flawlessly on one machine, but crash on
another. To find and fix such problems prior to release, you need a tool
that works like an x-ray machine to expose the hidden defects in your
code. You need Insure++®.

Insure++ saves you hours and hours of painstaking manual labor and
wasted resources by automatically exposing such difficult-to-find
problems as memory corruption, memory leaks, pointer errors, I/O errors,
and more. With the click of a button or a simple command, Insure++
automatically uncovers the defects in your code - even those defects that
were previously unknown.

Insure++'s Breakthrough
Technologies
Insure++ detects more errors than any other tool because its technologies
achieve the deepest possible understanding of the code under test and
flush out even the most elusive problems.

Using patented Source Code Instrumentation (#5,581,696 and
#6,085,029) and Runtime Pointer Tracking (#5,842,019) technologies,
Insure++ develops a comprehensive knowledge of the software and all of
its elements under test. During compilation, Insure++ inserts test and
analysis functions around every line of source code. It builds a database
of program elements, and then checks each data value and memory
reference against the database at runtime to verify consistency and
correctness.

Using these unique technologies, Insure++ thoroughly examines and
tests your code from inside and out, including "rewriting" it through a
process called "Mutation Testing," then reports errors and pinpoints their
exact location. Insure++ also performs coverage analysis, clearly
indicating which sections of the code were tested.
1

Welcome!

2

By integrating Insure++ into your development environment, you can
save weeks of debugging time and prevent costly crashes from affecting
your customers. You can also use Insure++ with other Parasoft tools to
speed up debugging from the design phase all the way through testing
and QA.

Pinpointing Programming Errors
Two of the most serious software-related problems are the time needed to
debug (and therefore deliver) a product and the number of bugs that are
not detected during testing and which are only found at customer sites.

These problems arise in many different ways. Insure++ finds a wide
variety of programming and memory access errors, including:

• Memory corruption due to reading or writing beyond the valid
areas of global, local, shared, and dynamically allocated objects.

• Operations on uninitialized, NULL, or "wild" pointers.

• Memory leaks.

• Errors allocating and freeing dynamic memory.

• String manipulation errors.

• Operations on pointers to unrelated data blocks.

• Invalid pointer operations.

• Incompatible variable declarations.

• Mismatched variable types in printf and scanf argument lists.

Insure++ does not use a "statistical" approach to trap memory reference
errors. Instead, Insure++ checks each memory reference for validity when
that reference is executed, including those to static (global) and stack, as
well as dynamically allocated memory. When Insure++ finds a problem, it
reports the name of related variables, the line of source code containing
the error, a description of the error, and a stack trace.

Welcome!
Checking Calls to Libraries
Just as it does with memory reference errors, Insure++ finds the following
library interface errors:

• Mismatched argument types or function declarations.

• Invalid parameters in library calls.

• Errors returned by library calls.

Insure++ understands standard UNIX system calls, the X Window
system, Motif, and many other popular libraries. On each library call,
Insure++ checks that every variable is of the correct type and is within its
valid range.

If the source code for a third-party library is available, Insure++ can
automatically check it if you rebuild the library with Insure++ as you do
your own source code. If you don't have the source code, Insure++
includes utilities which allow you to make a "definition" of their interfaces.
Once the interface is completely specified, these libraries will receive the
same comprehensive checking that Insure++ provides for standard
libraries.

Code Coverage Analysis with TCA
The Total Coverage Analysis (TCA) add-on works hand-in-hand with
Insure++ to show you which parts of code you've tested and which you've
missed. With TCA, you can stop wasting time testing the same parts of
code over and over again and start exercising untested code instead.

Memory Optimization with Inuse
Your program may handle memory in real-time without any obvious
problems, but only Inuse can tell you for sure. Find out where unseen
leaks and other memory abuses are hurting your program with this
graphical "memory visualization" tool.
3

Welcome!

4

rs

cc
Supported Platforms and Compilers
The platforms and compilers supported by Insure++ at the time this man-
ual was printed are summarized in the table below:

The OS version listed above is the version under which Insure++ was
built. Older OS versions may work, and newer versions will generally
work.

If you have a different compiler, you may be able to customize Insure++
for your needs. Contact technical support (support@parasoft.com) for
more details. Supported versions of the g++ compiler include 2.95.x, 3.0,
3.1, and 3.2.

C++ Compilers C Compile

Platform OS cxx xlc aCC CC g++ gcc

AIX 5L X X X X

HP-UX
(PA-RISC,
IA-64)

11.x X X X X

Linux
(x86, PPC,
MIPS)

glibc 2.1+
for x86
and PPC,
glibc 2.2+
for MIPS

X X

Solaris
(SPARC)

7, 8, 9 X X X X

mailto:support@parasoft.com

Welcome!
New Features for Insure++ 6.1
Insure++ 6.1 for UNIX contains significant changes from previous
versions that will help you debug faster and more efficiently. These
include powerful new technologies and refined user interfaces.

New features/enhancements include:

• Improved runtime performance.

• Improved parser.

• Updated licensing scheme.

• General user enhancements.

• gcc/g++ 3.2 support.
5

Insure++ Installation, Startup, and Licensing

6

Insure++ Installation,
Startup, and Licensing
This section includes installation instructions for Insure++. If you are
upgrading from an earlier version of Insure++, please consult the file
Release.notes for brief descriptions of some major changes in this ver-
sion. The amount of disk space required by Insure++ 6.1 depends on
which system you are installing. The table below shows the approximate
size and ARCH label for each supported platform. These labels will help
you complete the installation.

Installing Insure++ involves the following steps:

Step 1. Create a Directory for the Insure++ Distribution

Step 2. Extract the CD-ROM Contents

Step 3. Extract the Installation Script

Step 4. Install Insure++

Step 5. Post-Installation Configuration

Step 6. Install a License

Step 7. Set the PARASOFT Environment Variable

Step 8. Modify Your PATH

System ARCH Disk Space (MB)

HP_UX 11.22 (HP IPF) hp11_ia64 170

HP_UX 11.22 (HP IPF) hp11 130

Linux (glibc 2.1 - glibc 2.2.5 x86) linux2 90

Linux (glibc 2.2 - glibc 2.2.5) linux_MIPS 120

Linux (glibc 2.1.3 - glibc 2.2.5) linux_PPC 65

Solaris 7, 8, 9 solaris 180

Insure++ Installation, Startup, and Licensing
Step 9. Modify Your Environment

Step 10. Running An Example

Each of these steps is fully explained below. Note: The following steps
describe the process of installing Insure++ from a CD-ROM. Installation
from the CD-ROM requires root privileges.

Step 1. Create a Directory for the Insure++
Distribution
Choose a location in which to install Insure++ and make this directory with
a command such as:

mkdir <target directory>

For example: mkdir /usr/local/parasoft

Make sure you have write privileges to this <target directory>.

Important: It is recommended that you do not install Insure++ as root.
When Insure++ is configured during installation, it must be configured for
the development environment, so that the proper compilers will be config-
ured. Be sure to use a directory where Insure++ can use the same com-
pilers that you would normally use during development.

All subsequent steps must be performed in the new directory, so you
should change to it now:

cd <target directory>

For example: cd /usr/local/parasoft

From now on we will assume that you have chosen to install the software
in a directory called /usr/local/parasoft as indicated above. If you choose
a different name, then modify the following commands appropriately.

Note for Linux Users: Chaperon records an absolute path during config-
uration. If you are using NFS or automounter, be sure that the mount
paths on the NFS client are the same as on the NFS server.
7

Insure++ Installation, Startup, and Licensing

8

Step 2. Extract the CD-ROM Contents
To mount the CD-ROM, you must be at the root:

su root

Create a /cdrom directory, if necessary:

mkdir /cdrom

The actual mount command is different on each platform we support.
Please use the appropriate command for your system. Note that the fol-
lowing commands assume your CD-ROM drive is at SCSI ID 6. If your
drive is at a different SCSI location, substitute the appropriate device file
name for your CD-ROM drive.

Change directory to the installation (target) directory you created in the
first step.

cd <target directory>

For example: cd /usr/local/parasoft

Then copy the tar file for your platform to the current directory with the fol-
lowing command:

cp /cdrom/insure/tar/ins_$(ARCH).tar .

Unmount the CD-ROM with the following command:

umount /cdrom

You can now press the eject button on your CD-ROM drive to eject the
CD before proceeding to Step 3.

System Command

IBM AIX mount -v cdrfs -r /dev/cd0 /cdrom

HP-UX mount -F cdfs -r /dev/dsk/c0t6d0 /cdrom

Linux mount -t iso9660 -o ro /dev/scd0 /cdrom

Solaris mount -F hsfs -r /dev/dsk/c0t6d0s2 /cdrom

Insure++ Installation, Startup, and Licensing
Step 3. Extract the Installation Script
Make sure you have write privileges to the <target directory> before you
start extracting installation files.

Extract the installation script with the command:

uncompress -c <tar_file> | tar xvf - install

for a compressed tar file, or

gzip -dc <tar_file> | tar xvf - install

for a gzipped tar file in which the name of the compressed or gzipped tar
file supplied to you should be inserted in place of the text <tar_file>.

If you are installing from a CD-ROM and your tar file is not compressed,
use the following command:

tar xvf <tar_file> install.

You are now ready to install Insure++ on your system using the provided
installation script. Steps 4 through 11 will lead you through this procedure.

Step 4. Install Insure++
Insure++ includes an installation script that will help you install Insure++
on your system. To run the installation script, execute the command:

./install

The script first prints version and technical support information

Extracting installation scripts ...
Insure++ Installation Script Version 6.1 (06/04/02)
Copyright (C) 1997-2002 by Parasoft
Technical Support is available at:
E-mail: support@parasoft.com
Web: http://www.parasoft.com
Telephone:(626) 305-0041
Fax: (626) 305-9048

before asking you to confirm that you want to install Insure++ in the cur-
rent directory. When the installation is completed, you will see the banner

* Installation of Insure++ 6.1 completed *
9

Insure++ Installation, Startup, and Licensing

10
The Insure++ distribution consists of the following directories and files.
ARCH below will be replaced in your distribution with your platform name,
for example, sgi6.

Note: The Insure++ example programs and scripts can be used for cus-
tomizing your use of Insure++

Directory Contents

bin.ARCH Insure++ executables

lib.ARCH Insure++ libraries and interfaces

src.ARCH Insure++ interface source code

examples Insure++ example programs and scripts

insra Insra help files

Inuse/ Inuse help files

man/ Insure++ user's manual

tca/ TCA help files

configure Insure++ compiler configuration script

install Insure++ installation script

FAQ.txt Insure++ Frequently Asked Questions

Insure++ Installation, Startup, and Licensing
Step 5. Post-Installation Configuration
The installation script will next lead you through a series of questions as it
configures Insure++ for your system. The script allows you to determine:

• Which compilers will be used with Insure++. This step does not
tell Insure++ which compiler to use when instrumenting and com-
piling your source code. You will still need to add an insure++.
compiler <compiler> option to one of your .psrc files to
specify which compiler should be used by Insure++. Therefore,
you should answer "yes" to these questions for any compiler
which you might use with Insure++ at some point in the future.

• Whether to send output to stderr or Insra (a GUI report viewer) by
default. If you want to configure Insure++ for additional compilers
later, you can execute the script ./configure in the installation
directory. Insure++ is now installed and configured on your sys-
tem, but your system must be configured before use.

Step 6. Install a License
The procedure for installing a license depends on whether you are install-
ing a machine-locked license or shared network license (using the Para-
soft LicenseServer).

Machine-Locked Licenses
After installing and configuring the necessary files, the installation script
will look for a valid license for Insure++. If one is not found, it will ask if
you would like to install one. If so, the script will start pslic, the Parasoft
License Manager.

If you get an error message from pslic saying that it cannot open a .psrc
file, you should make sure that you have write permission in the

<target directory>

(/usr/local/parasoft) and/or run pslic as superuser. pslic will print
out your machine and network id numbers. You should then phone, fax, or
email this information to Parasoft. You will receive a license which you
can enter using pslic. You can complete the remaining steps of the instal-
lation procedure without a license, but will not be able to use Insure++.
11

Insure++ Installation, Startup, and Licensing

12
Once you have the license, run pslic:

Choose option "A" to add a license: (A)dd a license

The first item you will need to enter is the network or host ID number,
which should be the same number printed by pslic. Next, you will be
prompted to enter the expiration date, which you received from Parasoft.
Finally, enter the password you were given.

To complete the license installation, select option "E" to exit and save
changes: (E)xit and save changes

Shared Network Licenses
If you are using Parasoft's LicenseServer to manage a floating license,
enter the following parameters in your .psrc file:

LicenseServer.host "hostname"

(Replace "hostname" with the name of the machine hosting Licens-
eServer; for example, LicenseServer.host machine1).

LicenseServer.port "port"

(Replace "port" with the port that LicenseServer is using; for example,
LicenseServer.port 2002).

Insure++ can be run on a different host from the one registered with
LicenseServer, as long as the .psrc file for the new machine is altered to
include the necessary shared network license information.

For example: if the LicenseServer is running on HostA, and the user runs
Insure++ from HostB, then add the following information in the .psrc file
wherever Insure++ is installed in HostB:

LicenseServer.host HostA
LicenseServer.port 2002
registertool LicenseServer 1.0

Important: If you are using LicenseServer, you do not need to run pslic or
enter anything in pslic.

Insure++ Installation, Startup, and Licensing
Step 7. Set the PARASOFT Environment Variable
Note: This step is optional and is NOT recommended.

In most cases, you will not need to set this environment variable. How-
ever, you may find it useful as a shortcut to the Insure++ installation. Also,
a tool may prompt you to set this environment variable. To set the PARA-
SOFT environment variable correctly, you will need to know the name of
the directory in which Insure++ has been installed on your system. Once
you know this path you should define an environment variable called
PARASOFT to be this pathname.

Typically, this can be performed by editing the file .cshrc in your home
directory and adding a line similar to:

setenv PARASOFT <target directory>

For example: setenv PARASOFT /usr/local/parasoft

Step 8. Modify Your PATH
You must add the directory containing the executables to your execution
path. Normally, you do this by adding to the definition of either the path or
PATH variables, according to the shell you are using. The directory in
which the executables are located will have a name that can be derived
from the type of system you are running on, and is given to you by the
install script.

A typical C-shell command would be:

set path=($path <target directory><arch>)

For example: set path=($path /usr/local/para-
soft/bin.linux2)

If you are in doubt as to which directory to put on your search path, ask
your system administrator for help.
13

Insure++ Installation, Startup, and Licensing

14
Step 9. Modify Your Environment
After modifying the appropriate configuration files, you should execute the
following commands to actually modify your working environment:

source ~/.cshrc
rehash

Step 10. Running An Example
Change to the Insure++ examples directory and run the makefile:

cd <target directory>/examples/c
make all

For example:

 cd /usr/local/parasoft/examples/c
 make all

Contacting Parasoft

m

m

Contacting Parasoft
Parasoft is committed to providing you with the best possible product sup-
port for Insure++. If you have any trouble using Insure++, please follow
the procedure below in contacting our Quality Consulting department:

• Check the manual.

• Be prepared to recreate your problem.

• Know your Insure++ version. (You can find it by typing insure at
the command prompt).

• Know your operating system version. (You can find it by typing
uname -a at the command prompt).

• If the problem is not urgent, report it by e-mail or by fax.

• If you call, please use a phone near your computer. The Quality
Consultant may need you to access Insure++ while you are on
the phone.

Insure++ experts are available online to answer your questions.

Contact Information

USA Headquarters Parasoft UK

Phone (888) 305-0041 +44 (020) 8263 2827

FAX (626) 305-9048 +44 (020) 8263 2701

Email Email: quality@parasoft.com Email: quality@parasoft-uk.co

Parasoft France Parasoft Germany

Phone +(33 1) 64 89 26 00 +49 7805/ 956 960

FAX +(33 1) 64 89 26 10 +49 7805/ 919 714

Email Email: quality@parasoft-fr.com Email: quality@parasoft-de.co
15

http://www.parasoft.com/jsp/pr/live_experts.jsp
mailto:quality@parasoft-uk.com
mailto:quality@parasoft-fr.com
mailto:quality@parasoft.com
mailto:quality@parasoft-de.com

Running Insure++

16
Getting StartedRunning Insure++
The goal of this section is to give you enough information to start
compiling and running your own programs under Insure++. Then you
should be able to start finding bugs in your own software.

You use Insure++ by:

1. Processing your program with the special insure program in
place of your normal compiler. This creates a version of your
code which includes calls to the Insure++ library and then passes
it to your normal compiler.

If you simply re-link your code, you will get a basic level of
checking for heap corruption and errors in calls to common C
functions as well as checking for memory leaks. If you wish to do
comprehensive checking, you can recompile your code with
Insure++ for the strongest possible runtime checking.

2. Running the program in the normal manner.

Note: On Linux x86, you can test your unmodified (uninstrumented)
executable with Chaperon. This does not require any recompiling and
relinking, or changing of environment variables. For more information see
the section “Chaperon (Linux x86 Only)” on page 52.

During the compilation process, Insure++ detects and reports various
errors including:

• Illegal typecasts

• Incorrect parameters specified to library routines

• Memory corruption errors which are "obvious" at compile time

During execution, Insure++ reports on a wide variety of programming
errors. For an exhaustive description of the types of errors detected, see
the section “Insure++” on page 33. For each error reported, you will see
the source line that appears to be incorrect and an explanation of what
type of error occurred.

Normally, Insure++ sends its output to stderr, but there is also a
graphical tool for viewing error messages, Insra. For more information,
see “Insra” on page 84.

Running Insure++
The easiest way to learn how to use Insure++ is to use it on an example
program and see what it does. This section introduces two of the
examples supplied with Insure++: one C example and one C++ example.
You may want to copy the appropriate files to a directory and perform the
steps as they are described.

The examples chosen here illustrate some of the simpler features of
Insure++ and have been chosen to help you start using the system
quickly. Once you have gone through this section, you should be in a
position to use Insure++ on your own programs.

Step-by-Step Integration
If you are working with a large application and don't want to jump right into
recompiling all your code with Insure++, you can use the following
method to integrate Insure++ into your development process
step-by-step.

• Link your program with insure.

• Add the option insure++.summarize leaks to your .psrc file and
run your program. Leaked blocks with stack traces will be
reported in a summary report at the conclusion of your program.

• To find out when and where the blocks were leaked as well as
find more bugs, start recompiling parts of your code with
Insure++.

For an example of this procedure, see “Linking Leak With Insure++” on
page 25.
17

Running Insure++

18
A Simple C Example: Sorting
The C demonstration code used in this section is a very simple program
which attempts to sort an array of numbers.

If you wish to follow along with the example in this section, you can save
some typing time by using the source code supplied with Insure++.

To get started, make a directory for temporary use and copy the source
code for this example to it with commands similar to

mkdir $HOME/insure
cd $HOME/insure
cp /usr/local/insure/examples/c/bubble1.c .

Compiling and Running Without Insure++
Once you've got a copy of the example program bubble1.c in your
current directory, you can compile it with the command

cc -g -o bubble1 bubble1.c

and then run it from the shell in the normal manner.
bubble1

The program doesn't crash, and it doesn't print any error messages.
Perhaps it's working?

Actually, this program has a serious error: a simple memory related bug.

Compiling Bubble1 With Insure++
Finding the error with Insure++ requires only that you recompile the
program with the special insure command

insure -g -o bubble1 bubble1.c

insure simply replaces your normal compiler on the command line.

Note: The -g in both of the above commands is necessary on many
platforms for Insure++ to be able to generate stack traces with file names
and line numbers.

You can use the same options you normally use to compile and link your
code by just replacing cc with insure in either your command lines or
your makefile.

Running Insure++
You may also compile the source code with compilers such as CC, gcc, or
g++ with Insure instrumentation without modifying the .psrc file by doing
the following: insure <CC, gcc, or g++>. For example, to compile
bubble1 in CC mode:
 insure CC -g -o bubble1 bubble1.c

To compile bubble1 in gcc mode:
 insure gcc -g -o bubble1 bubble1.c

If you normally use a C compiler other than cc, you can make Insure++ do
the same by creating a file called .psrc in your current directory and
adding a line like Insure++.compiler_c gcc. This option tells Insure++
to use gcc instead of cc to compile C source files.

If your compiler is not directly supported by Insure++, you will also need
to set the compiler_acronym option (see “Advanced Configuration
Options Used by Insure++” on page 167 for more details). If you need to
use the compiler_acronym option, you will also need to use the compiler
option instead of the compiler_c or compiler_cpp options. Both the
compiler and compiler_acronym options override any compiler_c or
compiler_cpp options.

If you are using a makefile, things are often even easier, because many
use the variable CC to define the name of the compiler to use. If this is true
in your case, you can build a version of your program with Insure++ by
typing the command

make CC=insure

You don't have to edit anything! Even better, you can build the original
(unchecked) version or the Insure++ version by simply changing the
command you type. If your makefile uses a different variable, e.g. LD , for
the link command, you will need to use a command like

make CC=insure LD=insure.

Note: If your original LD definition is /bin/ld, replace it with ins_ld. If it
was a compiler driver, such as cc, gcc, or g++, then replace it with
insure.
19

Running Insure++

20
Running Bubble1 With Insure++
Run the program bubble1.c just as you would if you hadn't compiled it
with Insure++.

bubble1

This time you get more interesting responses, as shown below:
[bubble1.c:27] **READ_BAD_INDEX**
>> if(a[j-1] > a[j]) {

 Reading array out of range: a[j - 1]

 Index used : -1
 In block : 0x0804b1a0 thru 0x0804b1c7 (40 bytes,
 10 elements)
 vector, declared at bubble1.c, 10

 Stack trace where the error occurred:
 bubble_sort() bubble1.c, 27
 main() bubble1.c, 16

The output from Insure++ indicates that something is wrong and indicates
the exact line number where the error occurs.

The error detected is indicated by the error code READ_BAD_INDEX and
occurs at line 20 of bubble1.c. The line of code that causes the error is
also shown along with a description of the problem. The other information
shown in the display is best understood by examining the source code for
the example, shown below.
/*
 * File: bubble1.c
 */

/*
 * pad1 and pad2 reduce possibility of reading
 * garbage when a[-1] is erroneously dereferenced.
 */
int pad1[10] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
int vector[10] = {4, 3, 6, 9, 1, 5, 8, 2, 0, 7};
int pad2[10] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
main()
{

Running Insure++
 bubble_sort(vector,
 sizeof(vector)/sizeof(vector[0]));
 exit(0);
}

bubble_sort(a, n)
 int a[], n;
{
 int i, j;

 for(i=0; i<n; i++) {
 for(j=0; j<n-i; j++) {
 if(a[j-1] > a[j]) {
 int temp;

 temp = a[j-1];
 a[j-1] = a[j];
 a[j] = temp;
 }
 }
 }
}

We first declare an array which contains the list of values to be sorted in
line 4. This is then passed from the main routine to the sorting subroutine
in line 8. The remaining information presented in the Insure++ bug report
can now be interpreted as follows.

• The illegal index used in line 20 has the value -1, which implies
that the variable j must have the value 0.

• The block of memory which is being accessed is fully described.
Its starting and ending memory locations are given along with the
size and number of elements in the array.

• The name of the array being accessed is given, including the
location at which it was declared. Notice that this information
describes the global variable vector, even though the
bubble_sort routine is accessing this variable by the name a, as
passed in its argument list.

• Finally, a stack trace is given which shows the sequence of func-
tion calls leading to this error.
21

Running Insure++

22
From this information, it is hard to miss the cause of the problem in the
code. The operation in line 20 is to compare an array element with its
predecessor. This is the right operation to perform, but since we use the
index values j and j-1, the loop range of j (in line 19) should start at 1,
not 0.

This type of problem is very common and can easily go unnoticed in
production code, because it doesn't crash the program and it may not
even affect the result. In the example shown, the out-of-bounds value is
quite likely zero, since it refers to another global variable.

Eliminating the Bug In Bubble1
The fix in this case is particularly simple - line 19 should actually read
19: for(j=1; j<n-i; j++) {

To see that this actually fixes the problem, either modify the source file or
copy bubble2.c from the Insure++ examples directory (see “A Simple C
Example: Sorting” on page 18). Compile and run it under Insure++ with
the commands
insure -g -o bubble2 bubble2.c
bubble2

This time no errors are reported.

Using Insure++ With C++ Code
By default, Insure++ is set up to use the CC compiler with C++ source
files on most platforms. The exceptions are Compaq Tru64 Unix (cxx),
IBM AIX (xlC), and Linux (g++). If you use a different compiler, you need
to insert the line
insure++.compiler_cpp [cxx|CC|g++|xlC]

into your .psrc file. This tells Insure++ to compile all C++ source files with
the given compiler.

Running Insure++
Another important consideration when using Insure++ is source code file
extensions. When Insure++ sees a .c file, it automatically treats it as C
code. Any file with a .cc, .C, .ccp, .cxx or .c++ extension will be treated
as C++ code. This is very important to understand. You cannot put C++
code in a file with a .c extension unless you also add the
insure++.c_as_cpp on option to your .psrc file. For more information
about this option, “Configuration Options” on page 162.

Linking C++ Objects With Insure++
If your makefile uses a separate link command with no source files on the
link line, you must have the insure++.compiler_default cpp option in
your .psrc file to tell Insure++ to use C++ linkage. If Insure++ only sees
objects and libraries on the link line, it cannot tell whether the code is C or
C++. By default, it assumes it is C code and uses C linkage. The above
option changes the default to C++ linkage.

As an alternative to the above method, if you use only C++ code, you can
set the compiler option in your .psrc file to your C++ compiler, e.g.
compiler CC. This option overrides any compiler_c, compiler_cpp, or
compiler_default options present and tells Insure++ to use the
indicated compiler every time it is called, for both compiling and linking.

A C++ Example: Memory Leak
C++ can be a very difficult language in which to program, so we have
significantly improved Insure++ to detect very hard-to-find bugs.

Often, code that contains serious errors can appear perfectly correct - at
least until the problems start manifesting themselves in crashes, core
dumps, or memory exhaustion. That is why we added capabilities like
program tracing and detection of memory allocation conflicts, dead code,
overloading operators and more.
23

Running Insure++

24
To illustrate how Insure++ can detect tricky, well-disguised memory leaks
in C++ code, let's consider the program whose source is presented below.
/*
 * File: leak.C
 */
#include <string.h>

union S1 {
 char *cp;
 S1() { cp=new char[10]; }
 S1(char *p) {
 cp=new char[10];
 strcpy(cp,p);
 }
 S1(S1 &s) {
 cp=new char[10];
 strcpy(cp,s.cp);
 }
 void mf(char *p) { strcpy(cp,p); }
};
void foo() {
 S1 s1,s2("Hello "),s3=s2;
 s1.mf("SADF");
 s3.mf("World");
}
int main() {
 foo();
 return(0);
}

Running Insure++
Linking Leak With Insure++
Insure++ now detects memory leaks when the program is only linked with
Insure++. Compiling and linking the example leak.C with the commands

g++ -g -c leak.C
insure -g -o leak leak.C

and executing
leak

with insure++.summarize leaks in your .psrc file activated produces
the output shown below in the leak summary report for the program leak.
*************INSURE SUMMARY ****************** v6.1 **
* Program : leak *
* Arguments : Not available *
* Directory : /usr/local/parasoft/examples/cpp*
* Compiled on : Not available *
* Run on : Jun 25, 2002 15:15:01 *
* Elapsed time : 00:00:00 *
* Malloc HWM : 30 bytes *

MEMORY LEAK SUMMARY
===================

3 outstanding memory references for 30 bytes.

Leaks detected at exit

 30 bytes 3 chunks allocated
 malloc() (interface)
 __builtin_new()
 foo() leak.C, 20
 main() leak.C, 25

The output in tells us that there is a leak from each of the constructors in
the S1 class. In many cases this may be enough information to find and fix
the bug. If it is not, however, Insure++ can give you more information,
including where the leak actually occurred, not just where the leaked
block was allocated.
25

Running Insure++

26
Compiling and Running Leak With Insure++
Compiling and linking the (leak.C) example with the command

insure -g -o leak leak.C

and executing
leak

produces the output shown below.
[leak.C:23] **LEAK_SCOPE**
>> }

 Memory leaked leaving scope: cp

 Lost block : 0x0804bad0 thru 0x0804bad9 (10 bytes)
 cp, allocated at:
 malloc() (interface)
 ** routines compiled without debug info **
 S1::S1() leak.C, 8
 foo() leak.C, 20
 main() leak.C, 25

 Stack trace where the error occurred:
 foo() leak.C, 23
 main() leak.C, 25

The leak occurs because there is no destructor in S1. When s1, s2, and
s3 are called in foo, they appear to be on the stack, which would not
cause memory to be allocated. However, S1 calls new to allocate memory
and does not have any way to deallocate it. This causes a large leak.
Only the first leak is reported at runtime because by default Insure++
reports only one error per category per line. This behavior can be
changed using the insure++.report_limit .psrc option.

Eliminating the Bug In Leak
This error can be easily corrected by adding a destructor to S1. For
example, adding the following line of code between lines 16 and 17 would
eliminate the bug.
 ~S1() { delete[] cp; } //destructor

Running Insure++
Improving Insure++'s Compile-Time
Performance
If you are compiling in a remotely mounted directory, one easy way to
decrease Insure++'s compile time is to use the temp_directory option.
This .psrc option controls where Insure++ writes its temporary files during
compilation. If you use it to redirect temporary files to a local disk,
compilation performance will improve dramatically. For example, adding
the option

insure++.temp_directory /tmp

to your .psrc file tells Insure++ to write its temporary files in the /tmp
directory.

You can significantly speed up the execution of your program by using the
header_ignore option in your .psrc file to avoid instrumenting header
files that you know are correct. See “Configuration Options” on page 162
for more information about this option.

Chaperon Quick Test (Linux x86 Only)
If you want to check your code for runtime errors but do not have the time
to instrument your code with Insure++, you can check your code with
Chaperon. Chaperon mode is faster-- though slightly less thorough-- than
regular (Source Code Instrumentation) mode. You can run your
application in Chaperon mode by entering
Chaperon filename.exe

at the prompt. For a complete description of Chaperon, including
examples, see “Chaperon (Linux x86 Only)” on page 52.

Maintaining Both Normal and
Insure++ Builds
Another way to save time is to create a complete image of your project
with Insure++ when you begin the debugging process. Then as you find
and fix errors, you can just recompile one or two files at a time with
27

Running Insure++

28
Insure++. This will cut down greatly on compilation time in comparison
with recompiling every file every time you want to switch from a normal
build to an Insure++ build, or vice versa.

The makefile shown below builds a program consisting of two source
files, func.c and main.c. Typing make would build main in the current
directory, using the default settings in the makefile. However, all that is
necessary to build a completely separate version of the program with
Insure++ is the command

make CC=insure TDIR=insure

Alternatively, you can edit the makefile to redefine CC and TDIR each time
you want to switch between a normal and an Insure++ build, if you prefer.
CC = cc
CFLAGS = -g
TDIR = .
OBJS = $(TDIR)/main.o $(TDIR)/func.o

$(TDIR)/main: $(OBJS)
$(CC) $(CFLAGS) -o $(TDIR)/main $(OBJS)

$(TDIR)/main.o: main.c
$(CC) $(CFLAGS) -o $(TDIR)/main.o -c main.c

$(TDIR)/func.o: func.c
$(CC) $(CFLAGS) -o $(TDIR)/func.o -c func.c

clean:
/bin/rm -rf $(TDIR)/*.o $(TDIR)/main

If you normally build libraries from your objects and do not add objects
explicitly to your link line, you can do a similar trick by building a variable
like TDIR into the object and library names, as shown in the makefile
given in the figure below. In this case, a command like

make CC=insure TARGET=_ins

would leave you with versions of your objects, libraries, and executable
tagged with names ending in _ins.
CC = cc
CFLAGS = -g
TARGET =

Running Insure++
OBJS = main$(TARGET).o
LIBS = libfunc$(TARGET).a

main$(TARGET): $(OBJS) $(LIBS)
$(CC) $(CFLAGS) -o main$(TARGET) $(OBJS) $(LIBS)

libfunc$(TARGET).a: func$(TARGET).o
ar ruv libfunc$(TARGET).a Func$(TARGET).o

main$(TARGET).o: main.c
$(CC) $(CFLAGS) -o main$(TARGET).o -c main.c

func$(TARGET).o: func.c
$(CC) $(CFLAGS) -o func$(TARGET).o -c func.c

clean:
/bin/rm -rf *$(TARGET).o main$(TARGET)\

libfunc$(TARGET).a

Common Insure++ Options
Insure++ is an extremely customizable tool. While this flexibility is one of
the great strengths of Insure++, it can present a problem for the new user.
Although we ship Insure++ with defaults that will serve the majority of
users quite well, we realize that some users have their own special needs
and preferences. To help you configure Insure++ for your use, we would
like to suggest some of the most popular options used by Insure++ users
over the years and explain what they do. You can then pick and choose
those that will be helpful in your particular situation.

More information about all of the options is available in the section
“Configuration Options” on page 162. All of the options listed there can be
placed in a file called .psrc in your local build directory with a prefix of
insure++. They are applicable at different times in the build process.
29

Running Insure++

30
Comprehensive Testing
The programs bubble2 and leak now run to completion, even when
compiled with Insure++. Of course, bubble1 and leak previously ran to
completion, even though they contained the errors that Insure++ found.
So what does it actually mean when Insure++ says there are no more
errors? It means that Insure's testing is quite comprehensive. A program
that passes Insure++ without any error messages will not contain any of
the following:

• Uninitialized memory accesses

• Illegal pointer operations

• "Wild" pointer operations caused when a pointer skips from one
data object to point at another

• Dynamic memory errors

• Accesses of memory blocks outside their legal bounds

• Memory leaks

Note that this is only a brief summary. The full set of errors detected by
Insure++ is described in the section “Insure++” on page 33 and listed in
the section “Error Codes” on page 197.

Running Insure++
Preventing Errors With CodeWizard
You can run Insure++ with CodeWizard to perform both automatic error
detection (Insure++) and automatic error prevention (CodeWizard) in a
single step. CodeWizard (available separately from Parasoft) checks your
code for design and coding problems that can lead to bugs and other
problems later on. By finding and fixing problems early, you can save
yourself untold amounts of debugging and maintenance time. In addition,
you will be learning valuable coding techniques that can actually reduce
the number of bugs in your code in the future.

By combining the analytical power of Code Wizard with the bug-finding
prowess of Insure++, you can speed up your entire development process.
At one glance, you'll see where the bugs are in your program and where
trouble is likely to occur in the future. Fix all the errors now and you'll save
yourself time and headaches later.

Download CodeWizard now!

See the CodeWizard Manual for more information on automatically
preventing coding errors.

Optimizing Dynamic Memory With
Inuse
Inuse is a graphical Insure++ add-on that allows you to watch how your
programs handle memory in real-time. Inuse will help you to better
understand the memory usage patterns of algorithms and how to optimize
their behavior. With Inuse, you'll have a clear understanding of how your
program actually uses (and abuses) memory. You can use Inuse to:

• See how much memory an application uses in response to partic-
ular user events

• Compare an application's overall memory usage to its expected
memory usage

• Look for memory fragmentation to see if different allocation strat-
egies might improve performance

• Detect the most subtle memory leaks, which can cause problems
over time.
31

http://www.parasoft.com/jsp/OutputSpecPage?thepath=/products/&pname=devtools

http://www.parasoft.com/jsp/products/manuals.jsp?product=Wizard&manual=wizard/manuals/index.html

Running Insure++

32
Running Inuse
In normal use, you should enter the inuse command once and simply
leave it running as a background process.

inuse

Inuse will be run the next time Insure++ is run. For more information, see
“Working With Inuse” on page 112.

Analyzing Code Coverage With TCA
The Total Coverage Analysis (TCA) add-on works hand-in-hand with
Insure++ and reports which parts of your program have actually been
tested by Insure++ and how often each block of code was executed.
Using TCA with Insure++ can dramatically improve the efficiency of your
testing and guarantee faster delivery of more reliable programs.

Running TCA
Insure++ tracks code coverage information in a file called tca.log. This
file is located in the same directory that your executable was built into.

You can analyze Insure++ coverage from the command line or through
the TCA GUI.

• To review code coverage information from the TCA GUI, click
File> Load in the TCA window and select the tca.log file
located in your program's directory.

• To review code coverage information from the command line,
type: tca tca.log. For command line options, type: tca.

Note for Linux: TCA does not work with Chaperon. Since Chaperon
works on the original executable (non-instrumented) and the tca.map is
not even created, there will be no tca.log. For more information, see
“Working With TCA” on page 138.

Insure++
Using Insure++Insure++
Using Insure++ is easy. You simply recompile your program with Insure++
instead of your normal compiler. Running the program under Insure++
then generates a report whenever an error is detected; this report usually
contains enough detail to track down and correct the problem.

Insure++ automatically detects errors that might otherwise go unnoticed
in normal testing. Subtle memory corruption errors and dynamic memory
problems often don’t crash the program or cause it to give incorrect
answers until the program is shipped to customers and they run it on their
systems. Then the problems start.

Even if Insure++ doesn’t find any problems in your programs, running it
gives you the confidence that your program doesn’t contain any errors.

Of course, Insure++ can’t possibly check everything that your program
does. However, its checking is extensive and covers every class of
programming error. The following table lists the types of errors that
Insure++ detects.

Memory Corruption Pointer Abuse Memory Leaks

Dynamic Memory
Manipulation

Strings Uninitialized Memory

Unused Variables Data Representation
Problems

Incompatible Variable
Declarations

I/O Statements Mismatched Argu-
ments

Invalid Parameters In
System Calls

Unexpected Errors
In System Calls
33

Insure++

34
Memory Corruption
This is one of the most unpleasant errors that can occur, especially if it is
well disguised. As an example of what can happen, consider the program
shown below. This program concatenates the arguments given on the
command line and prints the resulting string.
/*
 * File: hello.c
 */
#include <string.h>

main(argc, argv)
 int argc;
 char *argv[];
{
 int i;
 char str[16];

 str[0] = '\0';
 for(i=0; i<argc; i++) {
 strcat(str, argv[i]);
 if(i < (argc-1)) strcat(str, " ");
 }
 printf("You entered: %s\n", str);
 return (0);
}

If you compile and run this program with your normal compiler, you’ll
probably see nothing interesting. For example:

$ cc -g hello.c -o hello
$./hello
You entered :./hello
$./hello world
You entered: ./hello world
$./hello cruel world
You entered: ./hello cruel world

If this were the extent of your test procedures, you would probably
conclude that this program works correctly, despite the fact that it has a
very serious memory corruption bug.

Insure++
If you compile with Insure++, the command hello cruel world
generates the errors shown below, because the string that is being
concatenated becomes longer than the 16 characters allocated in the
declaration at line 7.
[hello.c:15] **WRITE_OVERFLOW**
>> strcat(str, argv[i]);

 Writing overflows memory: <argument 1>

 bbbbbbbbbbbbbbbbbbbbbbbbbb
 | 16 | 2 |
 wwwwwwwwwwwwwwwwwwwwwwwwwwwwww

 Writing (w) : 0xbfffeed0 thru 0xbfffeee1 (18 bytes)
 To block (b) : 0xbfffeed0 thru 0xbfffeedf (16 bytes)
 str, declared at hello.c, 11

 Stack trace where the error occurred:
 strcat() (interface)
 main() hello.c, 15

Memory corrupted. Program may crash!!

[hello.c:18] **READ_OVERFLOW**
>> printf("You entered: %s\n", str);

 String is not null terminated within range: str

 Reading : 0xbfffeed0
 From block: 0xbfffeed0 thru 0xbfffeedf (16 bytes)
 str, declared at hello.c, 11

 Stack trace where the error occurred:
 main() hello.c, 18

You entered: hello cruel world

Insure++ finds all problems related to overwriting memory or reading past
the legal bounds of an object, regardless of whether it is allocated
statically (that is, a global variable), locally on the stack, dynamically (with
malloc or new), or even as a shared memory block.
35

Insure++

36
Insure++ also detects situations where a pointer crosses from one block
of memory into another and starts to overwrite memory there, even if the
memory blocks are adjacent.

Pointer Abuse
Problems with pointers are among the most difficult encountered by C
programmers. Insure++ detects pointer-related problems in the following
categories

• Operations on NULL pointers.

• Operations on uninitialized pointers.

• Operations on pointers that don’t actually point to valid data.

• Operations which try to compare or otherwise relate pointers that
don’t point at the same data object.

• Function calls through function pointers that don’t actually point to
functions.

Below is the code for a second attempt at the “Hello world” program that
uses dynamic memory allocation.
/*
 * File: hello2.c
 */
#include <stdlib.h>
#include <string.h>

main(argc, argv)
 int argc;
 char *argv[];
{
 char *string, *string_so_far;
 int i, length;

 length = 0;

 for(i=0; i<argc; i++) {
 length += strlen(argv[i])+1;
 string = malloc(length+1);

Insure++
/*
 * Copy the string built so far.
 */
 if(string_so_far != (char *)0)
 strcpy(string, string_so_far);
 else *string = '\0';

 strcat(string, argv[i]);
 if(i < argc-1) strcat(string, " ");
 string_so_far = string;
 }
 printf("You entered: %s\n", string_so_far);
 return (0);
}

The basic idea of this program is that we keep track of the current string
size in the variable length. As each new argument is processed, we add
its length to the length variable and allocate a block of memory of the
new size. Notice that the code is careful to include the final NULL
character when computing the string length (line 11) and also the space
between strings (line 14). Both of these are easy mistakes to make. It’s an
interesting exercise to see how quickly Insure++ finds such an error.

The code in lines 19-24 either copies the argument to the buffer or
appends it depending on whether or not this is the first pass round the
loop. Finally in line 25 we point at the new, longer string by assigning the
pointer string to the variable string_so_far.

If you compile and run this program under Insure++, you’ll see
“uninitialized pointer” errors reported for lines 19 and 20. This is because
the variable string_so_far hasn’t been set to anything before the first
trip through the argument loop.
37

Insure++

38
Memory Leaks
A “memory leak” occurs when a piece of dynamically allocated memory
cannot be freed because the program no longer contains any pointers
that point to the block. A simple example of this behavior can be seen by
running the (corrected) “Hello world” program with the arguments
hello3 this is a test

If we examine the state of the program at line 27, just before executing
the call to malloc for the second time, we observe:

• The variable string_so_far points to the string “hello” which it
was assigned as a result of the previous loop iteration.

• The variable string points to the extended string “hello this”
which was assigned on this loop iteration.

These assignments are shown schematically below; both variables point
to blocks of dynamically allocated memory.

The next statement
string_so_far = string;

will make both variables point to the longer memory block as shown
below.

Pointer assignments before the memory leak

h e l l o t h i s \0

h e l l o \0

string

string_so_far

Insure++
Once this happens, however, there is no remaining pointer that points to
the shorter block. Even if you wanted to, there is no way that the memory
that was previously pointed to by string_so_far can be reclaimed; it is
permanently allocated. This is known as a “memory leak” and is
diagnosed by Insure++ as shown below.
[hello3.c:28] **LEAK_ASSIGN**
>> string_so_far = string;

 Memory leaked due to pointer reassignment: string

 Lost block : 0x0804bd68 thru 0x0804bd6f (8 bytes)
 string, allocated at hello3.c, 18
 malloc() (interface)
 main() hello3.c, 18

 Stack trace where the error occurred:
 main() hello3.c, 28

Pointer assignments after the memory leak

h e l l o t h i s \0

h e l l o \0

string

string_so_far
39

Insure++

40
This example is called LEAK_ASSIGN by Insure++ since it is caused when
a pointer is re-assigned. Other types of leaks that Insure++ detects
include:

Notice that Insure++ indicates the exact source line on which the problem
occurs, which is a key issue in finding and fixing memory leaks. This is an
extremely important feature, because it’s easy to introduce subtle
memory leaks into your applications, but very hard to find them all. Using
Insure++, you can instantly pinpoint the line of source code which caused
the leak.

Leak Type Description

LEAK_FREE Occurs when you free a block of memory that contains
pointers to other memory blocks. If there are no other
pointers that point to these secondary blocks then they
are permanently lost and will be reported by Insure++.

LEAK_RETURN Occurs when a function returns a pointer to an allo-
cated block of memory, but the returned value is
ignored in the calling routine.

LEAK_SCOPE Occurs when a function contains a local variable that
points to a block of memory, but the function returns
without saving the pointer in a global variable or pass-
ing it back to its caller.

Insure++
Should Memory Leaks Be Fixed?
Whether or not this is a serious problem depends on your application. To
get more information on the seriousness of the problem, add the
"Insure++ summarize leaks outstanding" option to your .psrc file.

To get more information on the seriousness of the problem, check the
Summarize: Leaks box in the Reports tab of the Insure++ Control Panel.

When you run the program again, you will see the same output as before,
followed by a summary of all the memory leaks in your code.

MEMORY LEAK SUMMARY
===================

5 outstanding memory references for 78 bytes.

Leaks detected during execution

55 bytes 4 chunks allocated at hello3.c, 18

 malloc() (interface)
 main() hello3.c, 18

Outstanding allocated memory

23 bytes 1 chunk allocated at hello3.c, 18

 malloc() (interface)
 main() hello3.c, 18

This shows that even this short program lost four different chunks of
memory. The total of 78 bytes isn’t very large and you might ignore it in a
program this size. If this was a routine in a larger program, it would be a
serious problem because every time the routine is called it allocates
blocks of memory and loses some. As a result, the program gradually
consumes more and more memory and will finally crash when the
memory space on the host machine is exhausted.

This type of bug can be extremely hard to detect, because it might take
literally days to show up. Insure++ only prints one error message although
the summary indicates that four memory leaks occurred. This is because
Insure++ normally shows only the first error of any given type at each
41

Insure++

42
particular source line. If you wish, you can change this behavior as
described in “Displaying Repeated Errors” on page 70.

Note: A dynamically allocated memory block is categorized as a leak if a
pointer to that block is lost during program execution. A block is
categorized as outstanding memory if a pointer to the block is retained up
to program termination, but the block is not freed prior to program
termination.

Finding All Memory Leaks
For an even higher level of checking, we suggest the following algorithm
for removing all memory leaks from your code.

1. Run your program from Inuse. If you see an increase in the heap
size as you run the program, you are leaking memory.

2. Compile all source code, but not libraries, with Insure++. Clean all
leaks that are detected by Insure++.

3. Compile everything that makes up your application with Insure++
-- source code and libraries. Clean any leaks detected by
Insure++. If you do not have source for any of the libraries, skip
this step and proceed to Step 4.

4. Examine each outstanding memory reference to determine
whether or not it is a leak. If the pointer is passed into a library
function, it may be saved. If this is the case, it is not a leak. Once
every outstanding memory reference is understood, and those
that are leaks are cleared, the program is free of memory leaks.

Insure++
Dynamic Memory Manipulation
Using dynamically allocated memory properly is another tricky issue. In
many cases, programs continue running well after a programming error
causes serious memory corruption; sometimes they don’t crash at all.

One common mistake is to try to reuse a pointer after it has already been
freed. As an example we could modify the “Hello world” program to de-
allocate memory blocks before allocating the larger ones. Consider the
following piece of code which does just that:

22: if(string_so_far != (char *)0) {
23: free(string_so_far);
24: strcpy(string, string_so_far);
25: }
26: else *string = '\0';

If you run this code (hello4.c) through Insure++, you’ll get another error
message about a “dangling pointer” at line 23. The term “dangling pointer”
is used to mean a pointer that doesn’t point at a valid memory block
anymore. In this case the block is freed at line 22 and then used in the
following line. This is another common problem that often goes unnoticed,
because many machines and compilers allow this particular behavior.

In addition to this error, Insure++ also detects the following errors:

• Reading from or writing to “dangling pointers."

• Passing “dangling pointers” as arguments to functions or return-
ing them from functions.

• Freeing the same memory block multiple times.

• Attempting to free statically allocated memory.

• Freeing stack memory (local variables).

• Passing a pointer to free that doesn’t point to the beginning of a
memory block.

• Calls to free with NULL or uninitialized pointers.

• Passing non-sensical arguments or arguments of the wrong data
type to malloc, calloc, realloc or free.
43

Insure++

44
Another way that Insure++ can help you track down dynamic memory
problems is through the RETURN_FAILURE error code. Normally, Insure++
will not issue an error if malloc returns a NULL pointer because it is out of
memory. This behavior is the default, because it is assumed that the user
program is already checking for, and handling, this case.

If your program appears to be failing due to an unchecked return code,
you can enable the RETURN_FAILURE error message class (See
“RETURN_FAILURE” on page 322). Insure++ will then print a message
whenever any system call fails.

Strings
The standard C library string handling functions are a rich source of
potential errors, since they do very little checking on the bounds of the
objects being manipulated.

Insure++ detects problems such as overwriting the end of a buffer as
described in “Memory Corruption” on page 34. Another common problem
is caused by trying to work with strings that are not null-terminated, as in
the following example:
/*
 * File: readovr2.c
 */
main()
{
 char junk;
 char b[8], c[8];
 strncpy(b, "This is a test",
 sizeof(b));
 memset(c, 0, sizeof(c));
 printf("%s\n", b);
 return (0);
}

This program attempts to copy the string This is a test into a buffer
which is only 8 characters long. Although it uses strncpy to avoid
overwriting its buffer, the resulting copy doesn’t have a NULL on the end.
Insure++ detects this problem in line 10 when the call to printf tries to
print the string.

Insure++
Uninitialized Memory
A particularly unpleasant problem to track down occurs when your
program makes use of an uninitialized variable. These problems are often
intermittent and can be particularly difficult to find using conventional
means, since any alteration in the operation of the program may result in
different behavior. It is not unusual for this type of bug to show up and
then immediately disappear whenever you attempt to trace it.

Insure++ performs checking for uninitialized data in two sub-categories.

To clarify the difference between these categories consider the following
code.
1: /*
2: * File: readuni1.c
3: */
4: #include <stdio.h>
5:
6: int main()
7: {
8: struct rectangle {
9: int width;
10: int height;
11: };
12:
13: struct rectangle box;

Category Name Description

1. copy Normally, Insure++ doesn’t complain when
you assign a variable using an uninitialized
value, since many applications do this with-
out error. In many cases the value is
changed to something correct before being
used, or may never be used at all.

2. read Insure++ generates an error report when-
ever you use an uninitialized variable in a
context which cannot be correct, such as an
expression evaluation.
45

Insure++

46
14: int area;
15:
16: box.width = 5;
17: area = box.width*box.height;
18: printf("area = %d\n", area);
19: return (0);
20: }

In line 17 the value of box.height is used to calculate a value which is
invalid, since its value was never assigned. Insure++ detects this error in
the READ_UNINIT_MEM(read)category. This category is enabled by
default, so a message will be displayed.

If you changed line 17 to
17: area = box.height;

Insure++ would report errors of type READ_UNINIT_MEM(copy) for both
lines 17 and 18, but only if you had unsuppressed this error category.

Unused Variables
Insure++ can also detect variables that have no effect on the behavior of
your application, either because they are never used, or because they are
assigned values that are never used. In most cases these are not serious
errors, since the offending statements can simply be removed, and so
they are suppressed by default.

Occasionally, however, an unused variable may be a symptom of a logical
program error, so you may wish to enable this checking periodically. See
“UNUSED_VAR” on page 327 for more details.

Insure++
Data Representation Problems
A lot of programs make either explicit or implicit assumptions about the
various data types on which they operate. A common assumption made
on workstations is that pointers and integers have the same number of
bytes. While some of these problems can be detected during compilation,
others hide operations with typecasts such as shown in the following
example:

char *p;
int ip;

ip = (int)p;

On many systems this type of operation would be valid and would not
cause any problems. However, when such code is ported to alternative
architectures problems can arise. The code shown above would fail, for
example, when executed on a PC (16-bit integer, 32-bit pointer) or a 64-
bit architecture such as the Compaq Tru64 Unix (32-bit integer, 64-bit
pointer).

In cases where such an operation loses information, Insure++ reports an
error. On machines for which the data types have the same number of bits
(or more), no error is reported.

Incompatible Variable Declarations
Insure++ detects inconsistent declarations of variables between source
files. A common problem is caused when an object is declared as an
array in one file:

int myblock[128];

but as a pointer in another:
extern int *myblock;

See the files baddecl1.c and baddecl2.c in the examples directory for
an example. Insure++ also reports differences in size, so that an array
declared as one size in one file and a different size in another will be
detected.
47

Insure++

48
I/O Statements
The printf and scanf family of functions are easy places to make
mistakes which show up either as bugs or portability problems. For
example, consider the following code:

foo()
{

double f;

scanf("%f", &f);
}

This code will not crash, but the value read into the variable f will not be
correct, since its data type (double) doesn’t match the format specified in
the call to scanf (float). As a result, incorrect data will be transferred to
the program.

In a similar way, the example badform2.c
foo()
{

float f;

scanf("%lf", &f);
}

corrupts memory, since too much data will be written over the supplied
variable. This error can be very difficult to detect.

A more subtle issue arises when data types used in I/O statements
“accidentally” match. The following code

foo()
{

long l = 123;
printf("l = %d\n", l);

}

functions correctly on machines where types int and long have the
same number of bits, but fails otherwise. Insure++ detects this error, but
classifies it differently from the previous cases. You can choose to ignore
this type of problem while still seeing the previous bugs.

Insure++
In addition to checking printf and scanf arguments, Insure++ also
detects errors in other I/O statements. The code

foo(line)
char line[80];

{
gets(line);

}

works as long as the input supplied by the user is shorter than
80 characters, but fails on longer input. Insure++ checks for this case and
reports an error if necessary.

Note: This case is somewhat tricky, since Insure++ can only check for an
overflow after the data has been read. In extreme cases the act of reading
the data will crash the program before Insure++ gets the chance to report
it.

Mismatched Arguments
Calling functions with incorrect arguments is a common problem in many
programs, and can often go unnoticed. For example, Insure++ detects the
error in the following program
double foo(dd)

double dd;
{

return dd + 1.0;
}

main()
{

printf("Result = %f\n", foo(1));
}

in which the argument passed to the function foo in main is an integer
rather than a floating point number.

Note: Converting this program to ANSI style (for example, with a function
prototype for foo) makes it correct since the argument passed in main will
be automatically converted to double. Insure++ doesn’t report an error in
this case.
49

Insure++

50
Insure++ detects several different categories of errors, which you can
enable or suppress separately depending on which types of bugs you
consider important.

• Sign errors - Arguments agree in type but one is signed and the
other unsigned (for example, int vs. unsigned int).

• Compatible types - The arguments are different data types which
happen to occupy the same amount of memory on the current
machine (for example, int vs. long if both are 32-bits). While this
error might not cause problems on your current machine, it is a
portability problem.

• Incompatible types - Similar to the example above. Data types
are fundamentally different or require different amounts of mem-
ory. int vs. long would appear in this category on machines
where they require different numbers of bits.

Invalid Parameters In System Calls
Interfacing to library software is often tricky, because passing an incorrect
argument to a routine might cause it to fail in an unpredictable manner.
Debugging such problems is much harder than correcting your own code,
since you typically have much less information about how the library
routine should work.

Insure++ has built-in knowledge of a large number of system calls and
checks the arguments you pass to ensure correct data type and, if
appropriate, correct range.

For example, the code:
 void myrewind(FILE fp)
 {
 fseek(fp, (long)0, 3);
 }

would generate an error since the last argument passed to the fseek
function is outside the legal range.

Insure++
Unexpected Errors In System Calls
Checking the return codes from system calls and dealing correctly with all
the error cases that can arise is a very difficult task. Very rarely will a
program deal with all possible cases correctly.

An unfortunate consequence of this is that programs can fail
unexpectedly because some system call fails in a way that had not been
anticipated. The consequences of this can range from a nasty “core
dump” to a system that performs erratically at the customer location.

Insure++ has a special error class, RETURN_FAILURE, that can be used to
detect these problems. All the system calls known to Insure++ contain
special error checking code that detects failures. Normally these errors
are suppressed, since it is assumed that the application is handling them
itself, but they can be enabled at runtime by unsuppressing
RETURN_FAILURE in the Suppressions Control Panel. Any system call that
returns an error code will then print a message indicating the name of the
routine, the arguments supplied, and the reason for the error.

This capability detects any error in any known system call. Among the
potential benefits are automatic detection of errors in the following
situations:

• malloc runs out of memory.

• Files that do not exist.

• Incorrectly set permission flags.

• Incorrect use of I/O routines.

• Exceeding the limit on open files.

• Inter-process communication and shared memory errors.

• Unexpected “interrupted system call” errors.
51

Chaperon (Linux x86 Only)

52
Chaperon (Linux x86 Only)
Chaperon checks all data memory references made by a process,
whether in the developer's compiled code, language support routines,
shared or archive libraries, or operating system kernel calls. Chaperon
detects and reports reads of uninitialized memory, reads or writes that are
not within the bounds of allocated blocks, and allocation errors such as
memory leaks.

Chaperon works with existing executable programs. In most cases,
Chaperon requires no recompilation and no relinking, and no changes to
environment variables. Just add Chaperon to the beginning of the
command line; Chaperon will run the process and check all data memory
references.

When Chaperon detects improper behavior, it issues an error message
identifying the kind of error and where it occurred. Improper behavior is
any access to a logically unallocated region, a Read (or Modify) access to
bytes which have been allocated but not yet Written, or attempts to free
the same block twice.

Chaperon also detects memory blocks that have been allocated and not
freed. If such a block is not reachable by starting from the stack, or from
statically allocated regions, and proceeding through already reached
allocated blocks, then the block is a “memory leak.” Such a block cannot
be freed without some oracle to specify its address as the parameter to
free(). At exit() Chaperon will report leaked and outstanding memory
blocks if the corresponding Insure++.summarize option is in effect:

Chaperon <program_name> <arguments>

Using Chaperon does not require running under a debugger, but
Chaperon also works with existing debuggers such as gdb. For more
information, see “Using Chaperon With gdb” on page 63.

Chaperon (Linux x86 Only)
Requirements and Limitations
• ELF format executables and shared libraries, with /lib/ld-

linux.so.2 -> ld-2.1.1.so (or compatible), as the ELF pro-
gram interpreter. The important interfaces are
_dl_runtime_resolve, _dl_relocate_object
_dl_debug_state, and _r_debug.

• Any x86 processor [x >= 3] running Linux. In case of opcode con-
flict between manufacturers, Chaperon follows the Intel docu-
mentation.

• Linux kernel 2.4.x, 2.2.5, or compatible. Other kernels will work
with adjustment of the accounting for system calls.

• malloc/free/etc must not call sigaction that gets used.

• vfork() is remapped to fork(). Programs depending on
vfork() semantics may not work properly.

• 32-bit code (no 0x67 address size prefix; but 0x66 operand size
prefix is OK), flat model. Any explicit cs, ds, or ss segment selec-
tor in the instruction stream must equal the corresponding current
actual selector. Chaperon's access accounting treats all offsets
as belonging to segment ds. Application code using es, fs, or gs
does run; but the accounting may become confused.

Bitfields
Chaperon accounts for memory on a byte-by-byte basis. Since the
mapping between bytes and bitfields need not be 1-to-1 and onto, there
are problems. By default, Chaperon uses heuristics to guess that some
instruction sequences (that would otherwise generate complaints of Read
before Write) correspond to legitimate bitfield operations, and the
heuristics enable Chaperon to suppress those complaints.

They also cause a whole byte to be marked as Written as soon as the first
write to any bitfield that intersects it. The heuristics are not complete;
there will still be "false positive" complaints of Read before Write. Some
source statements and expressions that are not bitfields can generate
code that looks like bitfields, and for which the heuristics should be
disabled; use the command line parameter -bitfields=0.
53

Chaperon (Linux x86 Only)

54
The general palliative for cleaning up Chaperon complaints about bitfields
is to clear all words that contain bitfields as soon as the memory is
allocated, perhaps using memset and perhaps employing a union. This
can even be more efficient, but some programmers consider it to be
distasteful.

Symbols, Tracebacks, and Compilers
Chaperon's underlying execution engine and tracking for memory state
depend only on x86 architecture, and are compiler independent. But the
generation and reporting of tracebacks and symbols relies on Chaperon
being able to find and identify the code and symbols. Chaperon
recognizes the functions involved in dynamic binding (.dynsym symbols)
and static binding (.symtab symbols).

System Calls
Chaperon checks the documented memory access behavior of kernel
calls for Linux 2.2.x and 2.4.x except bdflush, capget, capset, getpmsg,
ipc (but shm* shared memory calls are checked), modify_ldt,
nfsservctl, prctl, putpmsg, quotactl, sysfs, and vm86*. Chaperon
understands the “regular” SYS_ioctl calls whose command word uses
_IOR, _IOW, or _IOWR, plus important non-regular cases such as TIOC*
(terminal control) and SIOC* (socket control).

Space
Chaperon runs in the same execution context and address space as the
process that Chaperon is checking. The linear coefficients of space
overhead are 2 bits of accounting info per byte of address space used by
the application, plus (16 + 8*traceback_length) bytes per active
allocated block. Process sizes greater than about 500MB have not been
well explored.

Chaperon (Linux x86 Only)
Memory States and Access
Accounting

Allocators: malloc, calloc, realloc, memalign, __libc_malloc,
__libc_calloc, __libc_realloc, __libc_memalign, stack growth
(push, create frame), __brk, brk, __sbrk, sbrk, mmap

De-allocators: free, realloc, __libc_free, __libc_realloc, __brk,
brk, __sbrk, sbrk, stack trim (pop, delete frame), munmap

Other known functions: memcpy, memset, memmove, memchr, bcopy, bzero,
strcat, strchr, __stpcpy, strcpy, strrchr. These are optimized for
faster performance, and/or to reduce the clutter of multiple error
messages that arise from a single call, and/or to suppress “false positive”
Read before Write messages from instruction sequences that are known
to be used to implement write-allocate cache control, or speculative word-
wide reading of byte arrays.

Handling of realloc(ptr, size):
If 0==size then free(ptr);
else if 0==ptr then mlloc(size);
else {free(ptr); malloc(size)}

and arrange for the new contents of the malloc()ed region to equal the
old contents for the first min(old_size, new_size) bytes. See also
“Bitfields” on page 53.

State Read or Modify Access Write Access

Unallocated Error: Read before
Allocate

Error: Write before
Allocate

Allocated but not
Written

error: Read before Write OK: becomes
Allocated and Written

Allocated and
Written

OK OK
55

Chaperon (Linux x86 Only)

56
Examples
Note: The numeric values of addresses might not match when the
examples are re-run. For instance, locations in the stack (0xbfffffff
and lesser nearby locations) depend on the number of characters in
environment variables. Locations in shared libraries (0x40000000 and
greater nearby locations) change with different versions and different
values of LD_PRELOAD. Locations in application code (0x08040000 and
greater nearby locations) depend on compiler and compiler options.

WRITE_OVERFLOW
To run this example, first, compile the code with gcc.

gcc -g -o writover writover.c

Run the new executable on Chaperon.
Chaperon writover

Chaperon should report errors such as:
/*
 * $RCSfile: writover.c,v $
 * $Revision: 32.2 $
 *
 * Comments:
 *
 * (C) Copyright Parasoft Corporation 1998.
 * All rights reserved.
 * THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF
 * Parasoft. The copyright notice above does not
 * evidence any actual or intended publication of such
 * source code.
 *
 */

// writover.c
#include <stdlib.h>

int
main()
{
 /* An example of WRITE_OVERFLOW*/

Chaperon (Linux x86 Only)
 char *p = malloc(10);
 p[11] = 3;
 return 0;
}

$Chaperon ./writover

// Chaperon(tm) memory access checker version 2.0
// 2002-06-18.
// Copyright 1999 BitWagon Software LLC. All
// rights reserved.
// Copyright 2001 Parasoft Corp. All rights reserved.
[writover.c:22] (Thread 0) **WRITE_OVERFLOW**
>> p[11] = 3;

 Writing overflows memory.

 bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
 | 10 | 1 | 1 |
 wwwww

 Writing (w) : 0x0804966b thru 0x0804966b (1 byte)
 To block (b) : 0x08049660 thru 0x08049669 (10 bytes)
 block allocated at writover.c, 21
 main() writover.c, 21

 Stack trace where the error occurred:
 main() writover.c, 22

Memory corrupted. Program may crash!!

Exit with return code 0 (0x0000).
 16 total blocks allocated
 0 total blocks freed.
Chaperon searching memory blocks...

End of memory leak processing.
57

Chaperon (Linux x86 Only)

58
READ_UNINIT_MEM
/*
 * $RCSfile: readunin.c,v $
 * $Revision: 32.3 $
 *
 * Comments:
 *
 * (C) Copyright Parasoft Corporation 1998.
 * All rights reserved.
 * THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF
 * Parasoft
 * The copyright notice above does not evidence any
 * actual or intended publication of such source code.
 *
 */

// readunit.c
int
main()
{
 int x, y;
 if (3==x) {
 return y+2;
 }
 else {
 return y-1;
 }
}

$ Chaperon readunin
// Chaperon(tm) memory access checker version 2.0
// 2002-06-18.
// Copyright 1999 BitWagon Software LLC. All rights
// reserved.
// Copyright 2001 Parasoft Corp. All rights reserved.
[readunin.c:19] (Thread 0) **READ_UNINIT_MEM(read)**
>> if (3==x) {

 Reading uninitialized memory.

 Pointer : 0xbfffee84

Chaperon (Linux x86 Only)
 Stack trace where the error occurred:
 main() readunin.c, 19

[readunin.c:23] (Thread 0) **READ_UNINIT_MEM(read)**
>> return y-1;

 Reading uninitialized memory.

 Pointer : 0xbfffee80

 Stack trace where the error occurred:
 main() readunin.c, 23

Exit with return code 1075315610 (0x4018039a).
 15 total blocks allocated
 0 total blocks freed.
Chaperon searching memory blocks...

End of memory leak processing.

FREE_DANGLING
/*
 * $RCSfile: freedngl.c,v $
 * $Revision: 32.2 $
 *
 * Comments:
 *
 * (C) Copyright Parasoft Corporation 1998. All rights
 * reserved.
 * THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF
 * Parasoft
 * The copyright notice above does not evidence any
 * actual or intended publication of such source code.
 *
 */

// freedngl.c
#include <stdlib.h>

int
59

Chaperon (Linux x86 Only)

60
main()
{
 char *p = malloc(13);
 free(p);
 free(p);
 return 0;
}

$Chaperon freedngl
// Chaperon(tm) memory access checker version 2.0
// 2002-06-18.
// Copyright 1999 BitWagon Software LLC. All rights
// reserved.
// Copyright 2001 Parasoft Corp. All rights reserved.
[freedngl.c:22] (Thread 0) **FREE_DANGLING**
>> free(p);

 Freeing dangling pointer.

 Pointer : 0x080496a8
 In block: 0x080496a8 thru 0x080496b4 (13 bytes)
 block allocated at freedngl.c, 20
 main() freedngl.c, 20

stack trace where memory was freed:
 main() freedngl.c, 21

 Stack trace where the error occurred:
 main() freedngl.c, 22

Memory corrupted. Program may crash!!

Exit with return code 0 (0x0000).
 16 total blocks allocated
 1 total blocks freed.
Chaperon searching memory blocks...

Chaperon (Linux x86 Only)
Summarize Leaks
Make sure that your .psrc file has the following line in it:

insure++.summarize leaks outstanding

Then run Chaperon again.
// Chaperon(tm) memory access checker version 2.0
// 2002-06-18.
// Copyright 1999 BitWagon Software LLC. All rights
// reserved.
// Copyright 2001 Parasoft Corp. All rights reserved.
[writover.c:22] (Thread 0) **WRITE_OVERFLOW**
>> p[11] = 3;

 Writing overflows memory.

 bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
 | 10 | 1 | 1 |
 wwwww

 Writing (w) : 0x0804966b thru 0x0804966b (1 byte)
 To block (b) : 0x08049660 thru 0x08049669 (10 bytes)
 block allocated at writover.c, 21
 main() writover.c, 21

 Stack trace where the error occurred:
 main() writover.c, 22

Memory corrupted. Program may crash!!

Exit with return code 0 (0x0000).
 16 total blocks allocated
 0 total blocks freed.
Chaperon searching memory blocks...
61

Chaperon (Linux x86 Only)

62
End of memory leak processing.
************************** INSURE SUMMARY****** v6.1 **
* Program : ./writover *
* Arguments : Not available *
* Directory : Not available *
* Compiled on : Not available *
* Run on : Jun 26, 2002 16:12:32 *
* Elapsed time : 00:00:00 *
* Malloc HWM : 2269 bytes (2K) *

MEMORY LEAK SUMMARY
===================

1 outstanding memory reference for 10 bytes.

Leaks detected at exit

 10 bytes 1 chunk allocated at writover.c, 21
 main() writover.c, 21

PROBLEM SUMMARY - by type
===============

Problem Reported Suppressed

WRITE_OVERFLOW 1 0

TOTAL 1 0

PROBLEM SUMMARY - by location
===============

WRITE_OVERFLOW: Writing overflows memory, 1 unique
occurrence

 1 at writover.c, 22

Chaperon (Linux x86 Only)
Using Chaperon With gdb
Chaperon can be used with your existing gdb, or with a modified gdb-5.0,
provided by Parasoft in INSTALLDIR/bin.linux2/gdb.exe.

Either version can be used to set a breakpoint in _Insure_trap_error,
which allows you to stop program execution at a point where a memory
reference error is detected, and examine program state, values of
variables, etc.

The Parasoft version of gdb could also be used to set breakpoints in your
binary and execute gdb commands, such as next, step, continue.

Note: Your existing gdb will be able to set breakpoints in your executable
as well, but you will not be able to properly continue execution after the
breakpoint.

For example:
$gdb.exe Chaperon
GNU gdb 5.0 extended 2000-09-12 by Parasoft Corporation for
Chaperon on Linux x86
Copyright 2000 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public
License, and you are welcome to change it and/or distribute
copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.
Type "show warranty" for details.
This GDB was configured as "i586-pc-linux-gnu"...
(gdb) b gdb_setup
Breakpoint 1 at 0x1700: file chap0.S, line 62.
(gdb) r chaptest
Couldnt get a file descriptor referring to the console
// Chaperon(tm) memory access checker version 2.0
// 2002-06-26.
// Copyright 1999 BitWagon Software LLC. All rights
// reserved.
// Copyright 2002 Parasoft Corp. All rights reserved.
63

Chaperon (Linux x86 Only)

64
Breakpoint 1, gdb_setup () at chap0.S:62
62 Copyright 1999 BitWagon Software LLC. All rights
reserved.
Current language: auto; currently asm
(gdb) b main
Breakpoint 2 at 0x80484d6: file chaptest.c, line 23.
(gdb) disable 1
(gdb) c

Breakpoint 2, main () at chaptest.c:23
23 return foo();
Current language: auto; currently c
(gdb) b _Insure_trap_error
Breakpoint 3 at 0x1706: file chap0.S, line 76.
(gdb) c
[chaptest.c:6] (Thread 0) **READ_UNINIT_MEM(read)**
>> if (p[1]) {

 Reading uninitialized memory.

 Pointer : 0x080496c1
 In block: 0x080496c0 thru 0x080496d3 (20 bytes)
 block allocated at chaptest.c, 4
 func() chaptest.c, 4
 foo() chaptest.c, 18
 main() chaptest.c, 23

 Stack trace where the error occurred:
 func() chaptest.c, 6
 foo() chaptest.c, 18
 main() chaptest.c, 23

Chaperon (Linux x86 Only)
Breakpoint 3, _Insure_trap_error () at chap0.S:76
76 .stabs "gdb_setup:F(0,1)",N_FUN,0,62,gdb_setup
Current language: auto; currently asm
(gdb) where
#0 _Insure_trap_error () at chap0.S:76
#1 0x804847c in func () at chaptest.c:6
#2 0x80484bb in foo () at chaptest.c:18
#3 0x80484db in main () at chaptest.c:23
#4 0x401bc5b0 in __libc_start_main () from /lib/libc.so.6
(gdb) quit

Exit with return code 146 (0x0092).
 16 total blocks allocated
 0 total blocks freed.
Exit 1

Finally, you can find the gdb-5.0.patch file, which contains diffs against
the original gdb-5.0 source in the Insure++ distribution directory.
65

Reports

66
Reports
The error reports that have already been shown indicate that Insure++
provides a great deal of information about the problems encountered in
your programs. Insure++ also provides many ways of customizing the
presentation of this information to suit your needs.

Default Behavior
By default, Insure++ adopts the following error reporting strategy:

• Error messages are “coded” by a single word shown in upper-
case, such as READ_OVERFLOW, LEAK_SCOPE, and so on.

• Messages about error conditions are displayed unless they have
been suppressed by default or in a site specific configuration file.
See “Error Codes” on page 197 for a list of error condition mes-
sages.

• Only the first occurrence of a particular (unsuppressed) error at
any given source line is shown. See “Report Summaries” on
page 77 for ways to change this behavior.

• Error messages are sent to the console (stderr), the Insra GUI,
or to a separate report file. See “The Report File” on page 67 or
“Sending Messages To Insra” on page 91.

• Each error shows a stack trace of the previous routines, dis-
played all the way back to your main program.

Reports
The Report File
Normally, error reports are displayed on the UNIX stderr I/O stream.
Users interested in sending output to Insra should consult the section
“Insra” on page 84. If you wish to send both your program’s output and
the Insure++ reports to a file, you can use the normal console redirection
method. An alternative is to have Insure++ redirect only its output directly
by adding an option similar to

insure++.report_file bugs.dat

to your .psrc file. This tells Insure++ to write its reports to the file
bugs.dat, while allowing your program's output to display as it normally
would. Whenever this option is in effect you will see a "report banner"
similar to

** Insure++ messages will be written to bugs.dat **

on your terminal when your program starts to remind you that error
messages are being redirected. To suppress the display of this banner
add the option

insure++.report_banner off

to your .psrc file.

Normally the report file is overwritten each time your program executes,
but you can force messages to be appended to an existing file with the
command

insure++.report_overwrite false

If you want to keep track of the reports from multiple runs of your code, an
alternative is to have Insure++ automatically generate filenames for you
based on a template that you provide. This template takes the form of a
string of characters with tokens such as %d, %p, or %V embedded in the
template. Each of these is expanded to indicate a certain property of your
program as indicated in the section “Configuration Options” on page 162.

For example, the advanced configuration :
report_file %v-errs.%D

when executed with a program called foo at 10:30 a.m. on the 21st of
December 2001, might generate a report file with the name

foo-errs.20011221103032
67

Reports

68
The last two digits are the seconds after 10:30 on which execution began.

Note: Programs which fork will automatically have a -%n added to their
format strings unless a %n or %p token is explicitly added to the format
string by the user. This ensures that output from different processes will
always end up in different report files.

You can also include environment variables in these filenames so that
$HOME/reports/%v-errs.%D

generates the same filename as the previous example, but also ensures
that the output is placed in the reports sub-directory of the user's HOME.

This method is very useful for keeping track of program runs during
development to see how things are progressing as time goes on.

Customizing the Output Format
By default, Insure++ displays a particular banner for each error report,
which contains the filename and line number containing the error, and the
error category found. For example:

[foo.c:10] **READ_UNINIT_MEM(copy)**

If you wish, you can modify this format to suit either your aesthetic tastes
or for some other purpose, such as enabling the editor in your integrated
environment to search for the correct file and line number for each error.

Customization of this output is achieved by setting the error_format
option in your .psrc file to a string of characters containing embedded
tokens which represent the various pieces of information that you might
wish to view. See “Advanced Configuration Options Used by Insure++” on
page 167 for more information.

For example, the command
error_format "\"%f\", line %l: %c"

would generate errors in the following format:
"foo.c", line 8: READ_UNINIT_MEM(copy)

which is a form recognized by editors such as GNU Emacs.

Reports
Note: Notice how the embedded double quote characters require
backslashes to prevent them being interpreted as the end of the format
string.

A multi-line format can also be generated with a command such as
error_format "%f, line %l\n\t%c"

which might generate errors in the following format:
foo.c, line 8

READ_UNINIT_MEM(copy)

Displaying Process Information
When using Insure++ with programs which fork into multiple processes,
you might wish to display additional process-related information in your
error reports. For example, adding the option

insure++.error_format
"%f, line %l: \n\tprocess %p@%h: %c"

in your .psrc file would generate errors in the form
foo.c, line 8:
process 1184@gobi: READ_UNINIT_MEM(copy)

which contains the name of the machine on which the process is running
and its process ID.

Displaying the Time At Which the
Error Occurred
It is often convenient to know exactly when various errors occurred. You
can extend the error reports generated by Insure++ in this fashion by
adding the %d and/or %t characters to the error report format as specified
in your .psrc file. For example, the format

insure++.error_format "%f:%l, %d %t <%c>"

generates error reports in the form
foo.c:8, 12-Jun-2002 14:24:03 <READ_NULL>
69

Reports

70
Displaying Repeated Errors
The default configuration suppresses all but the first error of any given
kind at a source line. You can display more errors by modifying the .psrc
file in either your working or HOME directory.

For example, adding the line
insure++.report_limit 5

to your .psrc file will show the first five errors of each type at each source
line.

Setting the value to zero suppresses any messages except those shown
in summaries (see “Report Summaries” on page 77).

Setting the report_limit value to -1 shows all errors as they occur.

Note: Not all information is lost by showing only the first (or first few)
errors at any source line. If you enable the report summary you will see
the total number of each error at each source line.

Limiting the Number of Errors
If your program is generating too many errors for convenient analysis, you
can arrange for it to exit (with a non-zero exit code) after displaying a
certain number of errors by adding the line

insure++.exit_on_error number

to your .psrc file and re-running the program. After the indicated number
of errors, the program will exit. If number is less than or equal to zero, all
errors are displayed.

Reports
Changing Stack Traces
There are two potential modifications you can make to alter the
appearance of the stack tracing information presented by Insure++ to
indicate the location of an error.

By default, Insure++ will read your program's symbol table at start-up time
to get enough information to generate stack traces. To get file and line
information, you will need to compile your programs with debugging
information turned on (typically via the -g switch). If this is a problem,
Insure++ can generate its own stack traces for files compiled with
Insure++. You can select this mode by adding the options

insure++.symbol_table off
insure++.stack_internal on

to your .psrc file. The stack_internal option will take effect after you
recompile your program, while the symbol_table option can be toggled
at runtime. In this case, the stack trace will display

** routines not compiled with insure **

in place of the stack trace for routines which were not compiled with
Insure++. This will also make your program run faster, particularly at start-
up, since the symbol table will not be read.

If your program has routines which are deeply nested, you may see very
long stack traces. You can reduce the amount of stack tracing information
made available by adding an option like

insure++.stack_limit 4

into your .psrc file. If you run your program again, you will see at most
the last four levels of the stack trace with each error. Note: Chaperon
does not support this option.

The value "0" is valid and effectively disables tracing.

The value "-1" is the default and indicates that the full stack trace should
be displayed, regardless of length.

Stack traces are also presented to show the function calling sequence
when blocks of dynamically allocated memory were allocated and freed.
In a manner similar to the stack_limit option, the malloc_trace and
free_trace options control how extensive these stack traces are.
71

Reports

72
Searching For Source Code
Normally, Insure++ remembers the directory in which each source file
was compiled and looks there when trying to display lines of source code
in error messages. Occasionally your source code will no longer exist in
this directory, possibly because of some sophisticated “build” or “make”
process.

You can give Insure++ an alternative list of directories to search for
source code by adding a value such as

 source_path .:/users/boswell/src:/src

to the .psrc file in your current working or HOME directories.

The list can contain any number of directories separated by colons.

Note: Insure++’s error messages normally indicate the line of source
code responsible for a problem on the second line of an error report, after
the >> mark. If this line is missing from the report, it means that the source
code could not be found at runtime.

Reports
Suppressing Error Messages
The previous sections described issues which can affect the appearance
of particular error messages. Another alternative is to completely
suppress error messages of a given type which you either cannot or do
not want to correct.

The simplest way of achieving this is to add lines similar to
insure++.suppress EXPR_NULL, PARM_DANGLING

to your .psrc file and re-run the program. No suppressed error messages
will be displayed, although they will still be counted and displayed in the
report summary (see “The Bugs Summary” on page 78).

In this context, certain wild-cards can be applied so that, for instance, you
can suppress all memory leak messages with the command

insure++.suppress LEAK_*

You can suppress all errors with the command
insure++.suppress *

which has the effect of only creating an error summary. If the error code
has sub-categories, you can disable them explicitly by listing the sub-
category codes in parentheses after the name. For example:

insure++.suppress BAD_FORMAT(sign, compatible)

Alternatively,
insure++.suppress BAD_FORMAT

suppresses all sub-categories of the specified error class.
73

Reports

74
Suppressing Error Messages By
Context
In addition to suppressing and unsuppressing errors by category or file,
you can also suppress and unsuppress error messages by context. For
example, to suppress READ_NULL errors occurring in routines with names
beginning with the characters sub, enter:

insure++.suppress READ_NULL { sub* * }

The interpretation of this syntax is as follows:

• The stack context is enclosed by a pair of braces.

• Routine names can either appear in full or can contain the * or ?
wildcard characters. The former matches any string, while the lat-
ter matches any single character.

• An entry consisting of a single * character matches any number
of functions, with any names.

• Entries in the stack context are read from left to right with the left-
most entries appearing lowest (or most recently) in the call stack.

With these rules in mind, the previous entry is read as:

• The lowest function in the stack trace (that is, the function gener-
ating the error message) must have a name that begins with sub
followed by any number of other characters.

• Any number of functions of any name may appear higher in the
function call stack.

A rather drastic, but common, action is to suppress any errors generated
from within calls to the X Window System libraries. If we assume that
these functions have names which begin with either "X" or "_X", we could
achieve this goal with the statements

insure++.suppress all { * X* * }
insure++.suppress all { * _X* * }

which suppresses errors in any function (or its descendents) which begins
with either of the two sequences.

Reports
As a final example, consider a case in which we are only interested in
errors generated from the routine foobar or its descendents. In this case,
we can combine suppress and unsuppress commands as follows

insure++.suppress all
insure++.unsuppress all { * foobar * }

Note: Error suppression is only possible for functions that appear in stack
traces which list error locations. For example, consider the following error
report for READ_DANGLING:
block committed at:
> f2()
> f1()
>stack trace where memory was decommitted:
> f3()
> e::g()
>stack trace where the error occurred:
> g2()
> g1()

You may suppress either of the functions g1() or g2() where the error
occurred by using

Suppress READ_DANGLING { * g1 * }

or
Suppress READ_DANGLING { * g2 * }

or
Suppress READ_DANGLING { g* * }

In this instance, however, you may not suppress either of the functions in
the stack trace where memory was decommitted.
75

Reports

76
Suppressing Messages by File/Line
In addition to suppressions based on stack traces, you can suppress error
messages based on the file/line generating the message.

The syntax for this type of suppression is:
file:line#
in file

Examples:
suppress readbadindex at foo.h:32

This suppresses readbadindex error messages at line 32 of foo.h at both
compile time and runtime.

suppress parserwarning in header.h

This suppresses all parser warnings in header.h.

Wildcards are not supported in filenames for this syntax. However, this
syntax can be used at both compile time and runtime (unlike stack trace
suppressions, which can only be used at runtime).

It is illegal to have both a stack trace suppression and a file/line
suppression on the same line. For example:

suppress myerror {a b c} at foo.c:3

Suppressing Other Warning
Messages
For other compile time warning messages that do not have an associated
number, there is another suppress option available. The
suppress_output option takes a string as an argument and will suppress
any message that includes text which matches the string. For example:

insure++.suppress_output wrong arguments passed

would suppress the warning from the previous section, as well as any
others that included this text string.

Reports
Enabling Error Messages
Normally, you will be most interested in suppressing error messages
about which you can or want to do nothing. Occasionally, you will want to
enable one of the options that is currently suppressed, either by system
default or one of your own .psrc files“Error Codes” on page 197 for more
information.This is achieved by adding a line similar to the following to
your .psrc file:

insure++.unsuppress RETURN_FAILURE

in the Item field. Unsupress follows the same rules as Suppress. For
more information, see the “Suppressions Control Panel” on page 24.

Report Summaries
Normally, you will see error messages for individual errors as your
program proceeds. Using the other options described so far, you can
enable or disable these errors or control the exact number seen at each
source line. This technique is most often used to systematically track
down each problem, one by one.

However, it is often useful to obtain a summary of the problems remaining
in a piece of code in order to track its progress. Insure++ supports the
following types of summary reports:

• A bug summary which lists all outstanding bugs according to their
error codes.

• A leak summary which lists all memory leaks - that is, places
where memory is being permanently lost.

• An outstanding summary which lists all outstanding memory
blocks - that is, places where memory is not being freed, but is
not leaked because a valid pointer to the block still exists.

• A coverage summary which indicates how much of the applica-
tion’s code has been executed.

Note: None of these options are displayed by default.
77

Reports

78
The Bugs Summary
This report summary is enabled by adding the option

insure++. summarize bugs

to your .psrc file and re-running your program.

In addition to the normal error reports, you will then also see a summary
such as the one shown below.
******************* INSURE SUMMARY *********v6.1*****
* Program : hello
* Arguments : this is bug summary test
* Directory : /home/Insure++/examples/c
* Compiled on : Jun 25, 2002 15:22:58
* Run on : Jun 26, 2002 13:16:43
* Elapsed time : 00:00:00
* Malloc HWM : 0 bytes
**
PROBLEM SUMMARY - by type
===============

 Problem Reported Suppressed

 READ_OVERFLOW 3 0
 WRITE_OVERFLOW 2 1

 TOTAL 5 1

PROBLEM SUMMARY - by location
===============

READ_OVERFLOW: Reading overflows memory, 3 unique occur-
rences
 1 at hello.c, 15
 1 at hello.c, 16
 1 at hello.c, 18

WRITE_OVERFLOW: Writing overflows memory, 2 unique occur-
rences
 2 at hello.c, 15
 1 at hello.c, 16

Reports
The first section is a header which indicates the following information
about the program being executed.

• The name of the program.

• Any command line arguments, if available.

• The directory from which the program was run.

• The time the program was compiled.

• The time the program was executed.

• The length of time needed to execute the program.

This information is provided so that test runs can be compared accurately
as to the arguments and directory of test. The time and date information is
supplied to correlate with bug tracking software.

The second section gives a summary of problems detected according to
the error code and frequency. The first numeric column indicates the
number of errors detected but not suppressed. This is the total number of
errors, which might differ from the number reported, since, by default, only
the first error of any particular type is reported at each source line. The
second column indicates the number of bugs which were not displayed at
all due to suppress commands.

The third section gives details of the information presented in the second
section, broken down into source files and line numbers.
79

Reports

80
The Leak Summaries
The simplest memory leak summary is enabled by adding the line

insure++.summarize leaks outstanding

to your .psrc file and re-running your program.

The output indicates the memory (mis)use of the program, as shown
below.
********************* INSURE SUMMARY ********* v6.1 **
* Program : leakscop
* Arguments :
* Directory : /home/Insure++/examples/c
* Compiled on : Jun 26, 2002 13:15:27
* Run on : Jun 26, 2002 13:17:54
* Elapsed time : 00:00:00
* Malloc HWM : 10 bytes
**

PROBLEM SUMMARY - by type
===============

 Problem Reported Suppressed

 LEAK_SCOPE 1 0

 TOTAL 1 0

Reports
PROBLEM SUMMARY - by location
===============

LEAK_SCOPE: Memory leaked leaving scope, 1 unique occurrence
 1 at leakscop.c, 10

MEMORY LEAK SUMMARY
===================

1 outstanding memory reference for 10 bytes.

Leaks detected during execution

 10 bytes 1 chunk allocated at leakscop.c, 9
 malloc() (interface)
 gimme() leakscop.c, 9
 main() leakscop.c, 15

The first section summarizes the “memory leaks” which were detected
during program execution, while the second lists leaked blocks that were
detected at program exit. These are potentially serious errors, in that they
typically represent continuously increasing use of system resources. If the
program is “leaking” memory, it is likely to eventually exhaust the system
resources and will probably crash.

The first number displayed is the total amount of memory lost at the
indicated source line, and the second is the number of chunks of memory
lost. Note that multiple chunks of different sizes may be lost at the same
source line - depending on which options you are using.
81

Reports

82
To customize the report, there are three options available:
1. leak_combine

The leak_combine option controls how Insure++ merges infor-
mation about multiple blocks. The default behavior is to combine
all information about leaks which were allocated from locations
with identical stack traces (leak_combine trace). It may be that
you would rather combine all leaks based only on the file and line
they were allocated, independent of the stack trace leading to
that allocation. In that case, you would use leak_combine loca-
tion. Or, you may simply want one entry for each leak
(leak_combine none).

2. leak_sort

The leak_sort option controls how the leaks are sorted after
having been combined. The options are none, location, trace,
size, and frequency (size is the default). Sorting by size lets
you look at the biggest sources of leaks, sorting by frequency
lets you look at the most often occurring source of leaks, and
sorting by location provides an easy way to examine all your
leaks.

3. leak_trace

The leak_trace option causes a full stack trace of each alloca-
tion to be printed, in addition to the actual file and line where the
allocation occurred.

The third section shows the blocks which are allocated to the program at
its termination and which have valid pointers to them. Since the pointers
allow the blocks to still be freed by the program (even though they are
not), these blocks are not actually leaked. This section is only displayed if
the outstanding keyword is used. Normally, these blocks do not cause
problems, since the operating system will reclaim them when the program
terminates. However, if your program is intended to run for extended
periods, these blocks are potentially more serious.

Reports
The Coverage Summary
The coverage summary is enabled by adding the line
insure++.summarize coverage

to your .psrc file and re-running your program.

In addition to the normal error reports, you will see a summary indicating
how much of the application's source code has been tested. The exact
form of the output is controlled by the .psrc file option
coverage_switches, which specifies the command line switches passed
to the tca command to create the output.

If this variable is not set, it defaults to
insure++.coverage_switches tca -dS

which displays an application level summary of the test coverage such as
COVERAGE SUMMARY
================
 0 blocks untested
 28 blocks tested

100% covered
83

Insra

84
Insra
Insra is a Graphical User Interface (GUI) for displaying error messages
generated by Insure++. The messages are summarized in a convenient
display, which allows you to quickly navigate through the list of bug
reports and violation messages, suppress messages, invoke an editor for
immediate corrections to the source code, and delete messages as bugs
are fixed.

Message
Header
Area

Menu Bar

Toolbar

Status
Bar

Insra
The Insra GUI
The Insra GUI contains the following components:

• Menu Bar: Contains options for manipulating files, messages,
and finding online help regarding the Insra GUI.

• Toolbar: Contains options for viewing, navigating through, and
suppressing messages.

• Message Header Area: Contains session headers and message
headers for programs currently connected to Insra.

• Status Bar: Reports the number of error messages currently dis-
played and the number of active connections.

The ensuing subsections contain more information on these GUI compo-
nents.

Menu Bar
The menu bar contains commands that manage Inuse memory functions.
Available commands are detailed below:

File
• Load... a file for inspection through Insure++.

• Save the currently open file.

• Save a file under a new name and location using Save as...
• Save a file in ASCII (text) format using Save ASCII
• Save a file in ASCII (text) format using Save As ASCII...
• Choose an executable file and Run it.

• Exit the Insra GUI.

Messages
• Prev or Next to choose among messages.

• Delete to remove a message from the list.

• Clear All to clear all messages from the list.
85

Insra

86
• Sort to sort among the messages in the list.

• Suppress to suppress selected messages in the list.

• Debug to activate the Visual C++ window and start debugging
the process within it to the point of execution where an error has
occurred.

Help
• Overview: About Insra to access online help concerning the

Insra GUI.

• Insra Toolbar to access online help concerning the Insra GUI
toolbar.

• Sending Messages to Insra to access online help concerning
sending messages to Insra.

• Suppressing Messages to access online help concerning sup-
pressing messages in Insra.

• Viewing Source Files to access online help concerning viewing
source files from the Insra GUI.

• Troubleshooting to access online help concerning troubleshoot-
ing tips for the Insra GUI.

• About to display which version of Insra you are running, as well
as Parasoft contact information.

Toolbar
The toolbar allows you to:

• Scroll through using the Previous or Next buttons.

• Delete selected messages as bugs are fixed.

• Suppress errors detected by Insure++.

• Sort messages by order (time) reported, error category, or direc-
tory and file.

• Kill the selected active connection.

• Access online Help.

Insra
The Message Header Area
The message header area contains session headers and message
headers for programs currently connected to Insra, as shown in the
following graphic:

Message Header

Session Header
87

Insra

88
Session Header
When the first error is detected for a particular compilation or execution, a
session header is sent to Insra. The session header includes the following
information:

• Compilation/execution

• Source file/program

• Host on which the process is running

• Process ID

Message Header
There are several types of message headers. Messages generated by
Insure++ include:

• Error Category. For example: LEAK_SCOPE.

• File name

• Line number

Message headers will also appear for various summary reports generated
by Insure++. These reports are generated using the .psrc options. See
“Report Summaries” on page 77 for more information. Double-clicking on
a message header will open up the message window for the error or
summary report selected.

The Status Bar
During compilation/runtime, Insure++ makes a connection to Insra each
time an error is detected. The status bar reports the number of error
messages currently displayed and the number of active connections. An
active connection is denoted by a yellow star to the left of the session
header. A connection remains active as long as the program is compiling/
running. Insra will not allow you to delete a session header as long as its
connection remains active, and you may not exit Insra until all
connections have been closed.

Insra
Message Window
The message window opens when you double-click on a message
header. This window contains the error message or summary report for
the selected message header, as shown in the following graphic:
89

Insra

90
Error Message
Insure++ error messages include:

• Line of source code where the error occurred.

• Explanation of the error detected.

• Stack traces for quick reference to the original source.

The stack traces are “live” and can be clicked once to launch an editor for
viewing and correcting the indicated line of code. For more information,
see “Viewing Source Files” on page 95.

All messages sent to Insra are marked with a special icon. Refer to the
following table for a brief description of each icon.

Icon Explanation

Insure++ error message

Insure++ summary report

Memory leak

Caught exception

Insra
Sending Messages To Insra
By default, all Insure++ output is sent to stderr. To redirect messages to
Insra, simply add the following line to your .psrc file.

insure++.report_file insra

This will redirect both compile-time and run-time messages to Insra.

The option
insure++.runtime.report_file insra

will send only runtime messages to Insra. Compile-time messages will
continue to be sent to stderr.

The option
insure++.compile.report_file insra

will send only compile-time messages to Insra. Runtime messages will
continue to be sent to stderr.

With insure++.report_file insra in your .psrc file, each time an
error is detected, Insure++ attempts to establish a connection to Insra. If
Insra is not yet running, it will automatically start. Once the connection is
established, a session header and all corresponding message headers
will be reported in the order they were detected. Each new compilation or
program, with its own session header and messages, will be displayed in
the order in which it connected to Insra.

Viewing and Navigating
Message headers sent to Insra are denoted by a specific icon. For more
information, see “The Insra GUI” on page 85. The body of the currently
selected message is displayed in a separate message window. Double-
click the message header to view the message itself. The message
header area and the message window are both resizable, and scroll bars
are also available to access text that is not visible. Currently active
messages become inactive when they are deleted or suppressed.
91

Insra

92
Selecting An Editor
In addition to the location of the source file, Insra must also know the
name of your editor and the command line syntax in order to display the
correct file and line from the original source code.

Insra obtains this information by reading the .psrc option value
insra.visual [editor_command]

This value may contain the special tokens %f and %l, which represent the
file name and line number, respectively.

The command will then be executed to load the file into your editor. It is
most important to include the full path of any binary that lives in a location
not pointed to by your PATH environment variable. If the variable has not
been set, vi will be used by default.

Some editors are not X applications and must be run in a terminal
window. vi requires the following command in order to lead the file
successfully:

insra.visual xterm -e vi +%l %f

Other editors (for example, Emacs) do not require an external terminal
program like xterm when configured for use as an X application. In this
case, the command string should be similar to the following:

insra.visual emacs +%l %f

Note: Most implementations of vi and Emacs appear to be sensitive to the
order of the line number and file name command line arguments,
requiring the line number to precede the file name.

Deleting Messages
Once error messages have been read and analyzed, the user may wish
to clear them from the window. The Delete button on the Insra toolbar
allows you to remove error messages from the display as errors are
corrected in your code. A message or an entire session may be removed
from the display by selecting an entry in the message header area and
clicking the Delete button. A message can also be deleted by selecting
Messages> Delete from the menu bar.

Insra
Suppressing Messages
You can easily suppress (turn "off") error messages which you do not
want Insure++ to generate. The Suppressions window allows you to
insert, modify, and delete suppression options for Insure++ error
messages. The suppression options you choose can be saved into your
.psrc files so that they will be used again the next time you use Insure++.

Note: To access the Suppressions window, click the Suppress button in
the Insra toolbar.

The Suppressions Window Toolbar
Moving from left to right across the toolbar in the Suppressions Window:

• The Previous and Next arrows select the next higher or next
lower suppression option, respectively.

• The Up and Down arrows move the currently selected suppres-
sion option up or down in the order of options. Because Insure++
follows suppression options from top to bottom, the order in which
they are listed affects the outcome of the suppression. (For more
information, see “Reports” on page 66.)

• The Delete button deletes the currently selected suppression
option.

• The Insert button inserts a new suppression option below the
currently selected option. If you had an error message selected
when you pressed the Suppress button on the Insra GUI, a sup-
pression option for that particular error message will be inserted.
Otherwise, the default suppression option (suppress all error
messages) will be inserted. Suppression options are easy to edit.
To change an option, simply follow the directions given below.

• The Save button writes all the suppression options which have
been marked as persistent (see below) into the indicated .psrc
files (see below). These suppression options will be in effect the
next time you use Insure++.

• The Help button provides context-sensitive help, which in this
window means that clicking anywhere will bring up this file.

• The Close button closes the suppression window.
93

Insra

94
Editing Suppression Options
An individual suppression option consists of five parts, listed below from
left to right:

• Suppress/Unsuppress: This field specifies whether the error
message listed is to be suppressed (as indicated by a speaker
with an X through it) or unsuppressed (indicated by a speaker
with no X through it). Double-clicking on the field toggles between
suppressing and unsuppressing the error message.

• Persistence: This field specifies whether the suppression option
will be saved to the .psrc file under which it is listed. Double-
clicking this field toggles it from persistent (the field is checked) to
temporary (the field is unchecked). Options marked as persistent
will be added to the appropriate .psrc files when the save button
is clicked. Options marked as temporary will be discarded.
Options with an X in this field cannot be made persistent, either
because they are hardwired or because the file in which it is
placed is not writable. New options are marked as persistent by
default.

• Item: Double-clicking this field allows you to type in the name of
the error message you would like to suppress or unsuppress. You
can use a wildcard (*) to match all error messages and also sup-
press and unsuppress by error category and context. For more
information on suppressing error messages, see “Suppressing
Error Messages” on page 73.

• File: Double-clicking this field allows you to type in the file for
which you would like to suppress or unsuppress messages.
Entering a blank field will insert a * which will match all files.

• Note: You may use this field to enter your own notes regarding
the suppression option listed.

Insra
Configuration (.psrc) Files
The headers in the window show the various locations in which .psrc
files reside. Insra will display the suppression options as read from each
file under the appropriate header. When you add a new option using the
Insert button, it will be inserted below the currently selected option. You
can then move it into the file in which you would like it saved, or mark it as
temporary by double-clicking the persistence field (see above).

There are two special locations where suppression options may reside
other than actual .psrc files: hardwired options and command line
options. The former are set internally by Insure++, and therefore cannot
be permanently changed. They can be edited and/or removed in the
window temporarily, however. The latter are options passed using the -
Zop and -Zoi options on the Insure++ command line. These options, like
hardwired options, cannot be made persistent, but can be moved into a
.psrc file if you decide that you want to make them permanent.

The Kill Process
When an active connection is selected, pressing the Kill button will stop
the selected compilation or execution.

Viewing Source Files
You can view the corresponding source file and line number for a
particular error message by double clicking any line of the stack trace
displayed in the message window. In most cases, the file and line number
associated with a given message have been transmitted to Insra. If Insra
is unable to locate the source file, a dialog box will appear requesting that
you indicate the correct source file.
95

Insra

96
Saving/Loading Messages To A File
All current messages can be saved to a file by selecting File> Save or
File> Save As from the menu bar. A dialog box allows you to select the
destination directory and name of the report file. Report files have the
default extension rpt. After a report file name has been selected,
subsequent File> Save selections save all current messages into the
report file without prompting for a new filename. A previously saved report
file can be loaded by selecting File> Load from the menu bar. A dialog
box then allows you to select which report file to load.

Help
On-line help can be obtained by choosing Help from the menu bar. This
provides a list of topics on the use of Insra.

Setting Preferences
You can modify Insra's appearance with .psrc configuration options.

These options are:

insra.body_background_color [White|color]
Specifies the color used for the message body area background. The
default is white.

insra.body_font [Fixed|font]
Specifies the font used for the message body text. The default is fixed.

insra.body_height [number of rows]
Specifies the starting height of the message window in number of rows of
visible text. The default is 8.

insra.body_text_color [Black|color]
Specifies the color used for the message body text. The default is black.

Insra
insra.body_width [columns of text]
Specifies the starting width of the message window in number of columns
of visible text. The default is 80, but if this value is set to a different value
than header_width, then the larger value will be used.

insra.button_style [Round|square]
Specifies the shape of buttons that will be shown on toolbars. The default
is round.

insra.coloured_shadows [on|off]
Specifies if round button shadows will be re-colored with the color of the
application background. The default is on.

insra.expose_on_message [on|off]
Specifies if the Insra GUI will be placed on top of windows stack if it
receives a new message. The default is off. (This option works only in by-
time view mode.)

insra.follow_messages [on|off]
Specifies if the main window messages area will be automatically scrolled
to follow arriving messages. The default is off. Note: this option works
only in by-time view mode.

insra.header_background_color [White|color]
Specifies the color used for the message header area background. The
default color is white.

insra.header_font [Fixed|font]
Specifies the font used for the message header text. The default is fixed.

insra.header_height [number of rows]
Specifies the starting height of the message header in number of rows of
visible text. The default is 8.
97

Insra

98
insra.header_highlight_color [LightSteelBlue2|color]
Specifies the color used to indicate the currently selected message or
session header in the message header area. The default is
LightSteelBlue2.

insra.header_highlight_text_color [Black|color]
Specifies the color used for the text of the currently selected message of
session header in the message header area. The default is black.

insra.header_session_color [LightSkyBlue3|color]
Specifies the color used for session header text. The default is
LightSkyBlue3.

insra.header_session_text_color [Black|color]
Specifies the color used for session header text. The default is black.

insra.header_text_color [Black|color]
Specifies the color used for message header text. The default color is
black.

insra.header_width [number of columns]
Specifies the starting width of the header area in number of columns of
visible text. The default is 80, but if this value is set to a different value
than body_width, the larger value will be used.

insra.mark_unique [on|off]
Specifies if messages not duplicated across all connections from the
same tool has to be marked by special arrow-like icon. The default is on.

insra.port [port_number]
Specifies which port Insra should use to communicate with Insure++
compiled programs. The default is 3255.

Insra
insra.sourcepath [dir_path1 dir_path2 ...]
Specifies directories to be searched by Insra to find source files launching
editor or showing source lines.

insra.toolbar [on|off]
Specifies whether Insra's toolbar is displayed. All toolbar commands can
be chosen from the menu bar. The default is on.

insra.viewmode [by_error|by_file|by_time|off|tool]
Specifies initial view mode. Allows user to override view mode settings
made by tools connecting with Insra.

• by_error - Insra GUI is initially set in view-by-error-category
mode

• by_file - Insra GUI is initially set in view-by-file mode

• by_time - Insra GUI is initially set in view-by-time mode

• off - Insra GUI is launched with the default view mode (i.e. by-
time mode)

• tool - means that view mode will be set by tool that first connects
with the Insra GUI. This is the default setting.

insra.visual [editor command]

Specifies how Insra should call an editor to display the line of source code
causing the error. Insra will match the %l token to the line number and the
%f token to the file name before executing the command. It is important to
include the full path of any binary that lives in a location not on your path.
Setting this option with no command string disables source browsing from
Insra. The default is xterm -e vi +%l %f
99

Insra

100
Troubleshooting
The following sections detail the most common errors encountered when
using Insra. If you still encounter trouble after trying one of the following
solutions, or if you encounter a different symptom from those listed below,
contact the Parasoft Quality Consulting department. See “Contacting
Parasoft” on page 15 for more information.

Insra Does Not Start Automatically
Symptom:While compiling or running, your program seems to hang when
error output is directed to Insra and Insra is not yet running.

Solution: Run Insra by hand. Type
insra &

at the prompt, wait for the Insra window to appear and then run or compile
your program again. Output should now be sent to Insra.

Multiple Insra Users On One Machine
Symptom: When more than one user is attempting to send message
reports to Insra, messages are lost.

Solution: Each invocation of Insra requires a unique port number. By
default, Insra uses port 3255. If collisions are experienced — for example,
multiple users on one machine — set the .psrc option insra.port to a
different port above 1024. Ports less than 1024 are officially reserved for
suid-root programs and should not be used with Insra.

Source Browsing Is Not Working
Symptom:
***Error while attempting to spawn browser execvp failed!

Solution: Insra attempted to launch your editor to view the selected
source file, but could not locate your editor on your path. Make sure that
this application is in a directory that is on your path or that you call it with
its complete pathname.

Selective Checking
Selective Checking
By default, Insure++ will check for bugs for the entire duration of your
program. If you are only interested in a portion of your code, you can
make some simple, unobtrusive changes to the original source to achieve
this.

When you compile with insure, the pre-processor symbol __INSURE__ is
automatically defined. This allows you to conditionally insert calls to
enable and disable runtime checks.

For example, assume that you are not interested in events occurring
during the execution of a hypothetical function grind_away. To disable
checking during this function, you can modify the code as shown below:

void grind_away() {
#ifdef __INSURE__

 _Insure_checking_enable(0);
 //disables Insure++ checking

#endif
... code ...

#ifdef __INSURE__
 _Insure_checking_enable(1);
 //enables Insure++ checking

#endif
}

Now when you compile and run your program, it will not check for bugs
between the calls to _Insure_checking_enable.

If you do not want to modify the code for the grind_away function itself,
you can add calls to _Insure_checking_enable around the calls to
grind_away.

Every call to disable checking should be balanced by a call to enable
checking. You should therefore be wary of using this function together
with exceptions, such as longjmp, and so on.

The Insure++ runtime library will continue to record memory allocations
and deallocations while checking is disabled. Thus, disabling checking
does not affect the runtime library's knowledge of a program's memory
usage.
101

Interacting with Debuggers

102
Interacting with Debuggers
While it is our intent that the error messages generated by Insure++ will
be sufficient to identify most programming problems, it will sometimes be
useful to have direct access to the information known to Insure++. This
can be useful in the following situations:

• You are running your program from a debugger and would like to
cause a breakpoint whenever Insure++ discovers a problem.

• You are tracing an error using the debugger and would like to
monitor what Insure++ knows about your code.

• You wish to add calls to your program to periodically check the
status of some data.

Available Functions
Whenever Insure++ detects an error, it prints a diagnostic message and
then calls the routine _Insure_trap_error. This is a good place to insert
a breakpoint if you are working with a debugger.

The following functions show the current status of memory and can be
called either from your program or the debugger. Remember to add
prototypes for the functions you use, particularly if you are calling these C
functions from C++ code.

1. int _Insure_mem_info(char *pmem);

Displays information that is known about the block of memory at
address pmem. (Returns zero.)

2. int _Insure_ptr_info(char **pptr);

Displays information about the pointer at the indicated address.
(Returns zero.)

Interacting with Debuggers
The following function lists all currently allocated memory blocks,
including the line number at which they were allocated. It can be called
directly from your program or from the debugger.
long _Insure_list_allocated_memory(int mode);

The mode can be chosen from any of the following options:

• 0 - Just the total allocation

• 1 - “Newly-Allocated” or reallocated blocks

• 2 - Everything

Sample Debugging Session
The use of these functions is best illustrated by example. Consider the
following program:
/*
 * File: bugsfunc.c
 */
#include <stdlib.h>

main()
{
 char *p, *q;

 p = (char *)malloc(100);

 q = "testing";
 while(*q) *p++ = *q++;

 free(p);
 return (0);
}

Compile this code under Insure++ in the normal manner (with the -g
option), and start the debugger in the normal manner.

Note: The instructions shown here assume that the debugger you are
using is similar to gdb. If you are using another debugger, similar
commands should be available.
103

Interacting with Debuggers

104
$ gdb bugsfunc
GNU gdb 5.1
Copyright 2001 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public
License, and you are welcome to change it and/or distribute
copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show war-
ranty" for details.
This GDB was configured as "i686-pc-linux-gnu"...
(gdb) break main
Breakpoint 1 at 0x80499e6: file bugsfunc.c, line 7.

(gdb) run
Starting program: /home/Insure++/examples/c/bugsfunc
Breakpoint 1, main (_Insight_argc=1,
_Insight_argv=0xbffff004) at bugsfunc.c:7
7 {

If the debugger has trouble recognizing and reading the source file, you
may need to use the rename_files on option. See “Configuration
Options” on page 162 for more information about this option.

It is generally useful to put a breakpoint in _Insure_trap_error so that
you can get control of the program whenever an error occurs. In this case,
we run the program to the error location with the following result
(gdb) break _Insure_trap_error
Breakpoint 2 at 0x40143017: file UserInterface.cc, line 303.

Note: The above may not work if you have linked against the shared
Insure++ libraries (the default). If you cannot set a breakpoint as shown
above, it is because the shared libraries are not loaded by the debugger
until the program begins to run. You can avoid this problem by setting a
breakpoint on main and running the program until that breakpoint is hit,
then setting the breakpoint on _Insure_trap_error.

Interacting with Debuggers
(gdb) c
Continuing.
[bugsfunc.c:15] **FREE_BODY**
>> free(p);

 Freeing memory block from body: p

 Pointer : 0x0804b9cf
 In block : 0x0804b9c8 thru 0x0804ba2b (100 bytes)
 p, allocated at bugsfunc.c, 10
 main() bugsfunc.c, 10

 Stack trace where the error occurred:
 main() bugsfunc.c, 15

Memory corrupted. Program may crash!!

Breakpoint 2, _Insure_trap_error () at UserInterface.cc:303
303 }
Current language: auto; currently c++
(gdb)

The program is attempting to free a block of memory by passing a pointer
that doesn’t indicate the start of an allocated block. The error message
shown by Insure++ identifies the location at which the block was allocated
and also shows us that the variable p has been changed to point into the
middle of the block, but it doesn’t tell us where the value of p changed.

We can use the Insure++ functions from the debugger to help track this
down. Since the program is already in the debugger, we can simply add a
breakpoint back in main and restart it.
$ gdb bugsfunc
GNU gdb 5.1
Copyright 2001 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public
License, and you are welcome to change it and/or distribute
copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show war-
ranty" for details.
This GDB was configured as "i686-pc-linux-gnu"...
(gdb) break bugsfunc.c:10
105

Interacting with Debuggers

106
Breakpoint 1 at 0x80499ed: file bugsfunc.c, line 10.

(gdb) run
Starting program: /home/Insure++/examples/c/bugsfunc
Breakpoint 1, main (_Insight_argc=1,
 _Insight_argv=0xbffff004) at bugsfunc.c:10
10 p = (char *)malloc(100);

(gdb) print _Insure_ptr_info(&p)
 Uninitialized
$1 = void

To see what is currently known about the pointers p and q, we can use the
_Insure_ptr_info function

Note: The _Insure_ptr_info function expects to be passed the address
of the pointer, not the pointer itself. To see the contents of the memory
indicated by the pointers, use the _Insure_mem_info function.
(dbx) print _Insure_ptr_info(&p)

Uninitialized
(dbx) print _Insure_ptr_info(&q)

Uninitialized

Both pointers are currently uninitialized, as would be expected.

To see something more interesting, we can continue to line 13 and repeat
the previous steps.
(gdb) break 13
Breakpoint 2 at 0x8049bef: file bugsfunc.c, line 13.
(gdb) cont
Continuing.

Breakpoint 2, main (_Insight_argc=1,
_Insight_argv=0xbffff004) at bugsfunc.c:13
13 while(*q) *p++ = *q++;
(gdb) print _Insure_ptr_info(&p)
 Pointer : 0x0804b9c8 (heap)
 Offset : 0 bytes
 In Block: 0x0804b9c8 thru 0x0804ba2b (100 bytes)
 p, allocated at bugsfunc.c, 10
$3 = void

Interacting with Debuggers
The variable p now points to a block of allocated memory. You can check
on all allocated memory by calling _Insure_list_allocated_memory.
(gdb) print _Insure_list_allocated_memory(2)
1 allocated memory block, occupying 100 bytes.
[bugsfunc.c:10] 0x0804b9c8-0x0804ba2c (100 bytes).
$4 = 100

Finally, we check on the second pointer q.
(gdb) print _Insure_ptr_info(&q)
 Pointer : 0x0804a2d6 (global)
 Offset : 0 bytes
 In Block: 0x0804a2d6 thru 0x0804a2dd (8 bytes)
 q, declared at bugsfunc.c, 12
$5 = void

Everything seems OK at this point, so we can continue to the point at
which the memory is freed and check again.
(gdb) break 15
Breakpoint 3 at 0x8049d87: file bugsfunc.c, line 15.
(gdb) c
Continuing.

Breakpoint 3, main (_Insight_argc=1,
_Insight_argv=0xbffff004) at bugsfunc.c:15
15 free(p);
(gdb) print _Insure_ptr_info(&p)
 Pointer : 0x0804b9cf (heap)
 Offset : 7 bytes
 In Block: 0x0804b9c8 thru 0x0804ba2b (100 bytes)
 p, allocated at bugsfunc.c, 10
$6 = void

The critical information here is that the pointer now points to an offset
7 bytes from the beginning of the allocated block. Executing the next
statement, free(p), will now cause the previously shown error, since the
pointer doesn’t point to the beginning of the allocated block anymore.

Since everything was correct at line 12 and is now broken at line 15, it is
simple to find the problem in line 13, where pointer p is incremented while
looping over q.
107

Tracing

108
Tracing
Tracing is a very useful enhancement of Insure++ for C++ programmers.
Because C++ is such a complicated language, programmers may never
know which functions are being called or in which order. Some functions
are called during initialization before the main program begins execution.
Tracing provides the programmer with the ability to see how functions,
constructors, destructors, and more are called as the program runs.

Insure++ prints a message at the entry to every function which includes
the function name, filename, and line number of the command that called
it.

A typical line of output from tracing looks like this:
function_name filename, line_number

By default, the output is indented to show the proper depth of the trace.

Tracing
Activating Tracing
By default, tracing is turned off. The easiest way to turn tracing on is to set
the trace on value. This turns on tracing for the entire program. See
“Advanced Configuration Options Used by Insure++” on page 167 for
more information about this option.

Note: To get a full trace, you must use the -g compiler switch on your
insure compile line. To get file names and line numbers in the trace
output, you must use the stack_internal on option when compiling
your program. You may not want to always do this, because your program
will slow down while every function call prints information.

This problem can be minimized by selectively turning on tracing during
the execution of your program only in those sections of the code where
you need it most. This can be done using the special Insure++ command

void _Insure_trace_enable(int flag)

where flag = 0 turns tracing off, and flag = 1 turns tracing on.

There is an additional special Insure++ function that works with tracing.
This function may be used to add your own messages to the trace
void _Insure_trace_annotate(int indent, char *format, ...)

where indent = 0 means string is placed in column zero, indent = 1
means string will be indented at proper level, and format should be a
normal printf-style format string.

Directing Tracing Output To A File
You can direct tracing output to a specific file by setting a trace_file
filename value in the Advanced tab> Advanced Configuration
Settings for Insure++. When you use this option, Insure++ prints a
message reminding you where the tracing data is being written. If you
would like to eliminate these reminders, you can use the trace_banner
off option.
109

Tracing

110
Example
The following code can be found in the examples\cpp directory as the file
trace.cpp.
/*
 * File: trace.C
 */
int twice(int j) {
 return j*2;
}

class Object {
public:
 int i;
 Object() {
 i = 0;
 }
 Object(int j) {
 i = j;
 }
 operator int() { return twice(i); }
};

int main() {
 Object o;
 int i;

 i = o;
 return i;
}

If you compile and link trace.cpp with the -Zoi "stack_internal on"
option, and then run the executable with the trace on value set, you will
see the following output:
main [called by non-insure code]
 Object::Object trace.C, 21
 Object::operator int trace.C, 24
 twice trace.C, 17

For more information about these and other options see “Advanced
Configuration Options Used by Insure++” on page 167.

Signals
Signals
In addition to its other error checks, Insure++ also traps certain signals. It
does this by installing handlers when your program starts up. These do
not interfere with your program’s own use of signals - any code which
manipulates signals will simply override the functions installed by
Insure++.

Signal Handling Actions
When a signal is detected, Insure++ does the following

• Prints an informative error.

• Logs the signal in the Insure++ report file, if one is being used.

• Calls the function _Insure_trap_error.

• Takes the appropriate action for the signal.

If this last step will result in the program terminating, Insure++ attempts to
close any open files properly. In particular, the Insure++ report file will be
closed. Note that this can only work if the program hasn’t crashed the I/O
system. If, for example, the program has generated a “bus” or similar
error, it might not be possible to close the open files. In the worst of all
possible scenarios you will simply generate another (fatal) signal when
Insure++ attempts to clean up.

Which Signals Are Trapped?
By default, Insure++ traps all signals. You can subtract from this list by
adding lines to your .psrc file and re-running the program.

Signals are removed with
insure++.signal_ignore SIGINT SIGQUIT SIGTERM

Note: You can omit the SIG prefix if you wish.
111

Working With Inuse

112
InuseWorking With Inuse
Inuse is a graphical tool designed to help developers avoid memory
problems by displaying and animating in real time the memory allocations
performed by an application.

By watching your program allocate and free dynamic memory blocks, you
gain a better understanding of the memory usage patterns of your
algorithms and also an idea of how to optimize their behavior.

Inuse allows you to:

• Look for memory leaks.

• See how much memory your application uses in response to par-
ticular user events.

• Check on the overall memory usage of your application to see if it
matches your expectations.

• Look for memory fragmentation to see if different allocation strat-
egies might improve performance.

Running the Inuse User Interface
The Inuse Graphical User Interface (GUI) does nothing but wait for
programs to start and connect to it, at which point it can display their
memory activity. When these programs terminate, the Inuse window
remains active until you choose to exit it. This allows you to analyze the
data gathered during a program’s run once the program has completed
execution.

If you exit Inuse while a program is still running, that program will continue
running as usual but will stop sending memory activity data. You will have
to start the inuse process again before memory activity can be displayed.

Working With Inuse
To run the example shown in this section, execute the commands
cp /usr/local/insure/examples/c/slowleak* .inuse

The first of these commands copies a set of example files to your local
working directory, while the second starts Inuse. Normally, you will only
have to execute the inuse command once. The inuse process will
remain running in the background, accepting display requests from any
application that you choose to run.

Compiling and Linking For Inuse
To use Inuse, you need to link your executable program with the insure
command. Compile the objects and libraries that make up your
application with your regular compiler and link them with Insure++ to
create a new executable.

Note: The insure command replaces the insight command used in
previous versions of Inuse.

Compile and link the sample program with the insure command:
cc -c slowleak.c
insure -o slowleak slowleak.o

Note: If you are using a compiler other than cc, you can tell Insure++ to
use the correct compiler during the link step by adding a line such as
insure++.compiler gcc to a .psrc file.

The first command compiles the source file into an object module, while
the second links with the special Inuse dynamic memory library.

Inuse is already available to your program if you are compiling your
program with Insure++ to debug your code. With earlier versions, if you
compiled with Insure++, Inuse would also display information about the
Insure++ runtime as it performs error detection. This is no longer the
case, because Insure++ now uses two separate heaps for the program.
Nevertheless, we still recommend the method described above.
113

Working With Inuse

114
Enabling Runtime Activity Display
Now that your program is linked with the appropriate libraries, you will
need to enable the runtime memory activity display. To do this, you must
add the following option to your .psrc file.

insure++.inuse on

Running the Application
Once you have enabled the runtime display, you can run your application
just as you would normally. To run the example application slowleak,
type the command

slowleak

The Inuse Display
When you start the example application, it will connect to Inuse. The
Inuse display shows which applications are currently linked to the GUI.
From this screen you can open any of Inuse’s visual reports.

For a complete description of the Inuse display, see “Running Inuse” on
page 116.

Is There a Bug In the Slowleak
Program?
Clicking on the Hist button on the Inuse display will open up the Heap
History window.

Watch the window for a few moments as the slowleak program continues
to run. The window should soon appear similar to the one shown below in
Figure 1.

Figure 1 clearly shows that the program is continuously allocating more
and more memory - the classic symptom of a memory leak. This type of
pattern in an Inuse report is important to watch for in your own
applications, since it probably means that something is wrong.

Working With Inuse
To find the cause of the problem, you can either look at the source code
manually and attempt to figure it out yourself, or simply compile the
program and run it with Insure++ using the following commands

insure -g -o slowleak slowleak.c
slowleak

Note: To use Inuse, you only need to link with the insure command. To
find the memory leak, you need to compile and link with Insure++, as
shown above. For a description of detecting memory leaks with Insure++,
see “Memory Leaks” on page 38.
115

Working With Inuse

116
To see the difference in Inuse’s output for correct and incorrect programs,
you can either fix the problem in the slowleak example or copy, compile,
and link the corrected version, noleak, with the following commands:

cp /usr/local/insure/examples/c/noleak.c .
cc -c noleak.c
insure -o noleak noleak.o
noleak

If you exited Inuse, you will need to start it again before running the last of
the commands shown above. You also need to have the insure++.inuse
on option set in your .psrc file to enable the graphical display, as
explained in “Enabling Runtime Activity Display” on page 114. Inuse can
be run independently of Insure++, meaning no relinking is necessary!

Running Inuse
The basic steps involved in using Inuse are:

• Running the GUI.

• Linking your program to Inuse.

• Adding the inuse on option to your .psrc file and running the
application program.

During runtime, you can view and manipulate the displays shown by the
GUI. You can even watch the memory allocation as you single step
through your program from a standard code-oriented debugger. This
section will cover each of these steps in detail.

Working With Inuse
The Basics
You must start the Inuse program before you attempt to display results
from any user application. (If you try to run an application before starting
Inuse it will run normally, without displaying any memory activity.) In
normal use, you should enter the inuse command once and simply leave
it running as a background process:

inuse

You should compile your code with your regular compiler and then link
with Insure++ as shown below:

insure -o foo foo.c

To enable runtime display of memory activity, you need to set the
following option in your .psrc file:

insure++.inuse on

Inuse can be linked simultaneously with any number of application
programs. By turning this option on and off, you can control when your
programs connect to Inuse. If you exit Inuse, you must restart it before
running any applications for which you wish to display memory activity.
117

Working With Inuse

118
The Inuse GUI
Executing the inuse command opens the Inuse GUI. When you connect
a program to Inuse, the connection will appear in the main window. The
“plugged in” symbol next to the connection shows that the program is
currently sending data to Inuse. If you tell Inuse to stop receiving memory
data from the program, this symbol will change to a stop sign. When the
program finishes its run or is terminated, the symbol is replaced with a
“RIP.”

Note: The “look and feel” of a windowing application will vary quite
significantly from system to system. As a result, the version of the window
that you see might differ from that shown above.

Menus Tool bar
Linked Applications

Working With Inuse
The Inuse Menu Bar
The menu bar contains commands that manage Inuse memory functions.
Available commands are detailed below:

File
• Load a file for inspection through Inuse.

• Save the currently open file.

• Save a file under a new name and location using Save as.

• Save all files currently open in Inuse using Save all.
• Save all files currently open in Inuse to a certain location and

name using Save all as.

• Choose an executable file and Run it.
• Exit the Inuse GUI.

Processes
• Attach a Label to a linked application.

• Use Next or Prev to choose among linked applications.

• Del (delete) a program from the list.

• Stop receiving memory display information from a linked pro-
gram.

• Step through one allocation or free request from the program at a
time.

Reports
The types of reports Inuse generates are described below. For more
information on these reports, see “Inuse Reports” on page 92.

• Heap History

This graph displays the amount of memory allocated to the heap
and the user process as a function of real (that is, wall clock)
time. This display updates periodically to show the current status
of the application, and can be used to keep track of the applica-
tion over the course of its execution.
119

Working With Inuse

120
• Block Frequency

This graph displays a histogram showing the number of blocks of
each size that have been allocated. It is useful for selecting
potential optimizations in memory allocation strategies.

• Heap Layout
This graph shows the layout of memory in the dynamically allo-
cated blocks, including the free spaces between them. You can
use this report to “see” fragmentation and memory leaks.

You can scan through different areas of the layout by pressing the
Fast Left (F.left), Fast Right (F.right) and left and right buttons
on the Heap Layout tool bar. You can also zoom in (+) and out (-)
of the layout by pressing the zoom buttons. (These options are
also available in the Controls menu.)

Clicking any block in the heap layout will tell you the block’s
address, size, and status (free, allocated, overhead, or leaked).
Clicking an allocated or leaked block will also open a window tell-
ing you the block id, block address, stack size, and stack trace for
the selected block.

• Time Layout
This graph shows the sequence of allocated blocks. As each
block is allocated it is added to the end of the display. As blocks
are freed, they are marked green. From this display, you can see
the relative size of blocks allocated over time. For example, this
will allow you to determine if you are allocating a huge block at
the beginning of the program or many small blocks throughout
the run.

Working With Inuse
• Usage Summary

This bar graph shows how many times each of the memory
manipulation calls has been made. It also shows the current size
of the heap and the amount of memory actively in use. (The heap
fragmentation can be computed simply from these numbers as
(total-in_use)/total).

• Usage Comparison

Graphically compares memory from different runs of one execut-
able or among runs of different executables.

• Query
The query function enables you to “view” blocks of memory allo-
cated by your program according to their id numbers, their size,
and/or their stack traces. You can edit the range of the query
according to block id, block size, and stack trace.

By “grouping” blocks of memory in this way, you can better under-
stand how memory is being used in your program. The range
options let you narrow or broaden your query to your specifica-
tions. For example, you can see how much memory is being allo-
cated from a single stack trace or by the entire program
combined. For each query you can choose whether you receive a
detailed (i.e. containing block id, block size, and stack trace infor-
mation) or summarized report.

Help
Online help feature for Inuse. Options include:

• Overview: Provides a general introduction to the Inuse feature.

• Inuse Reports. Describes the types of reports Inuse generates.

• Inuse Queries. Describes the uses of the query function in Inuse.

• About Inuse. Displays the version of Insra you are running, as
well as Parasoft contact information.
121

Working With Inuse

122
Tool Bar
The tool bar has icons for most menu options. Clicking an icon selects
that option. The following table lists the available tool bar icons.

Goes to the previous message in the Inuse GUI.

Goes to the next message in the Inuse GUI.

Deletes a selected message from the Inuse GUI.

Opens a history report for a linked application.

Opens a block frequency report for a linked application.

Opens a heap layout report for a linked application.

Working With Inuse
Opens a time layout report for a linked application.

Opens a usage summary report for a linked application.

Opens the query manager GUI for a linked application.

Accesses the online help menu for the Inuse application.
123

Working With Inuse

124
Block Color In Inuse
An important visual aid in Inuse is the use of colors to represent the
various properties of the heap. These colors are listed below:

Color Description

Black Indicates the total memory allocated to the heap. This is usu-
ally the amount of memory that gets swapped to disk when-
ever your application is swapped from memory, regardless of
whether or not you are actually using it.

Blue Denotes leaked blocks as reported by Insure++. Only avail-
able if running Inuse and Insure++ together.

Green Free space that is available to be allocated.

Red Denotes allocated blocks.

Yellow "Overhead” associated with each block. Normally the system
keeps a small amount of memory with each allocated (and
maybe free) block for its bookkeeping information. This
memory cannot be used by the application, although its
impact can be reduced by allocating fewer large blocks
rather than many small ones.

Working With Inuse
Selecting Reports
Which report is most useful depends on what you are trying to learn about
your application.

• If you want to see how much memory is being used, try the usage
summary and heap history reports.

• If you want to optimize your memory allocation strategy, perhaps
by building your own allocator for blocks of certain sizes, the
block frequency graph is appropriate.

• If you want to study the heap fragmentation caused by your algo-
rithm, and understand the way that memory blocks are laid out,
you should use the heap layout graph.

• If you want to see correlations between block id, block size, and
stack traces in your program, use the query option.

The following sections contain detailed descriptions of each Inuse report
option.

The Heap History Report
Clicking the History button or selecting Heap History from the Reports
menu opens the Heap History window. If your program is running when
you open this report, you will be able to monitor the amount of memory
allocated by the program as it executes. If the program has ended its run,
you can see how much memory was allocated across the history of the
run.
125

Working With Inuse

126
The black area indicates the total size of the heap. The red, yellow, and
blue areas constitute the make-up of the heap. The red area represents
the amount of memory allocated by the program. The yellow area
represents the amount of “overhead” associated with the memory (but
which cannot be used by the application). The blue area represents the
amount of leaked memory.

To change the sampling rate, that is, how much time passes before the
graph is updated, press the Sample button or select Sampling from the
Options menu.

Working With Inuse
The Block Frequency Report
The block frequency report shows what sizes of blocks are typically being
allocated by your program. If you are allocating many small blocks, you
may want to switch to a different memory allocation scheme which groups
many small allocations into several larger ones. A “block frequency”
graph might look like the one below.

The Block Frequency graph groups together blocks that are similarly
sized. Each bin (column) in the graph represents the number of blocks in
a particular size range. Clicking a bin will show you the number and size
range of blocks contained in that bin.
127

Working With Inuse

128
The right-most bin includes all blocks above a certain size. If this bin is
very high, click to see the size range covered by that bin. If the range is
fairly wide, you can rescale the graph to include more bins by pressing
the Bins button or selecting Bins from the Options menu. Entering a
number higher than the number currently shown should narrow the size
range for each bin.

Likewise, entering a number that is lower than the number currently
shown should increase the size range included in each bin. If all block
sizes are currently represented on the graph, increasing the bin number
will have no effect.

You can alternate between a linear or logarithmic scale by pressing the
Xscale and Yscale buttons. Pressing the Xscale button will toggle the x-
axis between linear and logarithmic scales. Pressing the Yscale button
will toggle the y-axis between linear and logarithmic scales. Selecting
Horiz.log/log or Vert.log/log from the Options menu will also toggle the
x- or y-axis.

Working With Inuse
The Heap Layout Report
The heap layout report shows the status of blocks in the program’s heap.
Blocks are either free, allocated, overhead, or leaked. Click a block to see
its address, size, and status. This information is shown in the lower right
corner of the display screen.

If the block is allocated or leaked, a Memory Information window will also
appear. The memory information window contains the block’s id, address,
stack depth, and stack trace.

You can scan through different areas of the heap layout by pressing the
Fast Left (F.left), Fast Right (F.right) and left and right buttons on the
Heap Layout tool bar. You can also zoom in (+) and out (-) of the layout by
pressing the zoom buttons. (These options are also available in the
Controls menu.)
129

Working With Inuse

130
The Time Layout Report
The time layout report shows how memory blocks are allocated across
the run of the program. As each block is allocated, it is added to the end
of the display. As blocks are freed, they are marked green.

From this display, you can watch how memory is allocated over the run of
your program. As you see the patterns in which memory blocks are
allocated and freed over time, you can better optimize your program’s use
of memory. Memory leaks are also shown on this display.

You can scan through the run by pressing the Fast Left (F.left), Fast Right
(F.right) and left and right buttons on the Time Layout tool bar. You can
also zoom in (+) and out (-) of the layout by pressing the zoom buttons.
(These options are also available in the Controls menu.)

Working With Inuse
The Usage Summary Report
The usage summary report shows how much memory you are using and
how often calls have been made to each category of memory allocation
functions malloc, realloc, and free. Note that the malloc category
includes all functions which allocate dynamic memory, for example
calloc, memalign, and XtMalloc.

Similarly, the realloc category includes all functions which relocate or
resize dynamic memory blocks. The free category includes all functions
which free dynamic memory. You can calculate the number of blocks
currently allocated by subtracting the number of frees from the number
of malloc’s. A typical “usage summary” graph might look like the
following:
131

Working With Inuse

132
The number given by "Alloc" is the total number of bytes allocated
dynamically by your program. The number given by “Heap” is the total
number of bytes currently allocated by the system to your program’s
heap.

The number given with “Number of calls” and “Memory in bytes” is simply
the extreme value on the x-axis for each graph. The limit of each graph
will change as Inuse updates the display with more memory allocation
function calls.

Query Reports
Query is a powerful tool that makes it easier for you to understand how
memory is being used by your program. With Query, you can find out
exactly how much memory is being allocated to blocks of a particular size
or location; how much memory is being allocated from a particular path;
find out the stack traces of blocks of a particular size or location; and
much, much more.

By creating queries, you will be creating a “model” of your program’s
memory use. You will be able to “look” at it from different angles and
approaches, learning more and more with each successive report. As you
come to understand how and where your program uses memory, you will
be able to better optimize your program’s memory use.

For example, if the Block Frequency report shows that your program is
using many small allocations (creating a lot of memory overhead), you
might want to know exactly how much memory is being allocated to these
small blocks. You will also want to know which part of the code is
responsible for creating them.

To find out how your program is distributing memory across block sizes,
you can run a query that shows how much memory is being allocated to
each size block.

If you find that your small blocks contain a lot of memory, you can then run
a query that gives you the block ids and stack traces responsible for
creating these small blocks.

Armed with this information, you will be able to make simple adjustments
to your code that will result in a more effective use of memory.

Working With Inuse
You can run queries on any combination of block id, block size, and stack
trace. These queries can be as flexible or as restrictive as you choose, as
you set the parameters. For more information, see “Editing a Query” on
page 134.

Running queries does not affect your program or its operation. By running
different queries and trying different approaches, you will soon see how
valuable and informative these reports can be.

Running a Query
Clicking Query opens the Query Manager screen. From here you can:

• Press Delete to delete the current query.

• Press New to start a new query.

• Press Load to open a saved query.

• Press Save to save the current query for later use.

• Press Edit to edit the currently selected query.

• Press Eval to evaluate the current query.

When you open a query, its name will appear in the Query Manager
window. If you pressed New, the query will be named NoName.
133

Working With Inuse

134
Editing a Query
Pressing the Edit button on the Query Manager screen will let you edit
the currently selected query. The Query Editor window allows you to:

• Change the name of a query.

• Set the lower and upper ranges for the block ids you want to iso-
late.

• Set the lower and upper ranges for the block sizes you want to
isolate.

• Enter an expression to isolate certain stack traces.

• Choose whether to receive a complete report (including block id,
block size, and stack trace data) or just a summary of block size
and/or stack trace information.

Working With Inuse
The default values for a query are 0 for the lower and upper block id and
block size ranges and no expressions in the stack trace area. This will
produce the widest query, listing all memory blocks allocated by your
program.

You can filter a query to isolate particular block ids, block sizes, and/or
stack traces. Just enter the values you want to filter for and “check” the
Filter by box.

The Sum by option provides a useful summary of block size and stack
trace data. Use it in combination with the Filter by option or on its own to
get a breakdown of blocks by size and/or stack trace.
135

Working With Inuse

136
A Query Example
Assume you want to learn more about blocks that are between 60 and 70
bytes in size. In the Block Size area, enter 60 in the lower range and 70 in
the upper range. Then click the Block Size Filter by box and press OK.
Running this query will return block ids and stack traces for all blocks
allocated by your program that are sized between 60 and 70 bytes.

Checking the Block Size Sum by box for this query will return a list
showing how much memory (in bytes) is being allocated to each block
size in that range.

You can enter filters for any or all three areas in a single query. This can
help you find out the exact stack trace(s) responsible for the largest block
allocations by your program, or conversely, to find out the size and
location of memory allocated from a particular stack trace path.

Once you have edited your query, pressing OK returns you to the Query
Manager.

To run the query, press the Eval button or select Evaluate Query from the
Commands menu. Query results will appear in a text window, as shown
below:

Working With Inuse
137

Working With TCA

138
TCAWorking With TCA
TCA (Total Coverage Analysis) lets you get “beneath the hood” of your
program to see which parts of your program are actually tested and how
often each block is executed. In conjunction with a runtime error detection
tool like Insure++ and a comprehensive test suite, this can dramatically
improve the efficiency of your testing and guarantee faster delivery of
more reliable programs.

Coverage Analysis
The idea behind test coverage is to analyze how many of an application's
files, functions, and statements have been executed. This data can be
used during development, and particularly during testing, to give some
idea of the overall quality of the testing.

The hope is that having information about which parts of an application
haven't been tested will enable you to modify or enhance your existing
testing procedures to cover the untested portions.

Unfortunately, this is a vain hope with conventional testing methods,
because even if the effort is made to achieve 100% test coverage, the
tests will usually be heavily biased towards the “important” parts of the
code which get executed most often.

Because of this, many organizations do not use test coverage analysis to
any great extent in their development process.

The Significance of Runtime Testing
An important difference emerges, however, when one considers the
additional power of runtime debugging tools such as Insure++.

The quality of the checking performed by Insure++ is independent of the
amount of effort put in by the development or quality assurance team--it
performs complete and thorough checking on any piece of code that it
executes (and also, of course, a significant amount of compile time
checking on code that it merely compiles). As a result, it makes a lot of
sense to aim for 100% test coverage if you are using a product such as
Insure++, because the testing is much more thorough.

Working With TCA
For this reason, Insure++ contains the Total Coverage Analysis (TCA)
module, which is a component of the Total Quality Software package
designed to guide you to 100% execution of your application during the
testing and quality assurance processes.

Using TCA
The coverage analysis system works in a similar way to Insure++. Your
application is processed with the insure command instead of your normal
compiler. This process first builds a temporary file containing your original
source code modified to include checks for coverage analysis, and then
passes it to your normal compiler. While your application runs, these
modifications cause your application to create a database containing
information about which blocks were executed. This database can then
be analyzed with a special application (tca) to create reports.

Preparing your Code For Coverage Analysis
Since coverage analysis is such a powerful tool when used in conjunction
with Insure++, it is automatically enabled whenever you compile an
application with the insure command, unless you specifically disable it,
as described in the section “Options Used By TCA” on page 190. If you
only want to perform coverage analysis (i.e. you don't want the normal
Insure++ runtime checking), you can compile and link with the -Zcov
switch.

Note: Please note that if you compile with insure and the -Zcov option,
you must also link with the -Zcov option, and vice versa. You cannot use
-Zcov in only one stage of the build.

An Example - Sorting Strings
To see this process in action, consider the code shown below, which is a
modified version of a bubble sorting algorithm.
/*
 * File: strsort.c
 */
#include <stdio.h>
#include <string.h>
139

Working With TCA

140
bubble_sort(a, n, dir)
 char **a;
 int n, dir;
{
 int i, j;

 for(i=0; i<n; i++) {
 for(j=1; j<n-i; j++) {
 if(dir * strcmp(a[j-1], a[j]) > 0) {
 char *temp;

 temp = a[j-1];
 a[j-1] = a[j];
 a[j] = temp;
 }
 }
 }
}

main(argc, argv)
int argc;
char **argv;
{
 int i, dir, length, start;

 if (argc > 1 && argv[1][0] == '-') {
 if (argv[1][1] == 'a') {
 dir = 1; length = argc-2; start = 2;
 } else if (argv[1][1] == 'd') {
 dir = -1; length = argc-2; start = 2;
 }
 } else {
 dir = 1; length = argc; start = 1;
 }
 bubble_sort(argv+start, length, dir);
 for (i = 2; i < argc; i++)
 printf("%s ", argv[i]);
 printf("\n");
 return 0;
}

Working With TCA
This program sorts a set of strings supplied as command line arguments
in either ascending or descending order, according to the settings of the
command line switches.

strsort -a s1 s2 s3 ...
Sorts strings in ascending order.

strsort -d s1 s2 s3 ...
Sorts strings in descending order.

strsort s1 s2 s3 ...
Sorts strings in ascending order.

If you wish to try the commands shown in this section, you can use the
source code supplied with the Insure++ examples by executing the
command

cp /usr/local/insure/examples/c/strsort.c .

To compile and execute this program with both runtime error detection
and coverage analysis enabled, simply use the normal insure command

insure -g -o strsort strsort.c

In addition to compiling the program, this will create a file called tca.map
which describes the layout of your source file. We can now perform a set
of tests on the application. A few samples are shown below. The
statements beginning with the $ symbol are the commands executed and
the remaining text is the response of the system.
$ strsort -a aaaa bbbb
aaaa bbbb
** TCA log data will be merged with tca.log **

$ strsort -a bbb aaa
aaa bbb
** TCA log data will be merged with tca.log **

$ strsort -d aaa bbbb
141

Working With TCA

142
bbbb aaa
** TCA log data will be merged with tca.log **

$ strsort -d bbb aaa
bbb aaa
** TCA log data will be merged with tca.log **

Note the following features from this example:

• Each time the application is executed, the coverage analysis
module issues a message indicating that information is being
added to a log file, which is created the first time the program is
run. This file contains the coverage information for one or more
test runs.

• Insure++ issues no error messages during any execution of the
program.

Analyzing Test Coverage Data
Analysis of the test coverage data is performed using the tca command.
There are several summary levels. The ones we will introduce here are:

• Overall summary (default) - Shows the percentage coverage at
the application level - i.e., summed over all program entities.

• Function summary (-df switch) - Displays the coverage of each
individual function in the application.

• Source code summary (-ds switch) - Displays the source code
with each block marked as executed (.) or not (!).

To see these commands in action, execute the command
tca tca.log

This displays the top level summary, shown below.
COVERAGE SUMMARY
================
 1 block untested
 12 blocks tested

92% covered

Working With TCA
As can be seen, the overall coverage is quite high. However, one program
block remains untested. To find out which one is untested, execute the
command

tca -df tca.log

This command displays the function level summary, and includes
functions that are 100% tested.
COVERAGE SUMMARY - by function
================

 blocks blocks %cov = functions
 untested tested %tested

 0 4 100% bubble_sort [strsort.c, line 7-13]
 1 8 88% main [strsort.c, line 26-45]

From this listing, you can see that the function bubble_sort is completely
tested, but that one block in main remains untested. To find out which
one, execute the command

tca -ds tca.log

This results in the following output.
UNTESTED BLOCKS - by file
===============

FILE strsort.c 92% covered: 1 untested / 12 tested

 /*
 * File: strsort.c
 */
 #include <stdio.h>
 #include <string.h>

 bubble_sort(a, n, dir)
 char **a;
 int n, dir;
 {
 int i, j;

143

Working With TCA

144
 . -> for(i=0; i<n; i++) {
 . -> for(j=1; j<n-i; j++) {
 . -> if(dir * strcmp(a[j-1], a[j]) > 0) {
 char *temp;

 . -> temp = a[j-1];
 a[j-1] = a[j];
 a[j] = temp;
 }
 }
 }
 }

 main(argc, argv)
 int argc;
 char **argv;
 {
 int i, dir, length, start;

 . -> if (argc > 1 && argv[1][0] == '-') {
 . -> if (argv[1][1] == 'a') {
 . -> dir = 1; length = argc-2; start = 2;
 . -> } else if (argv[1][1] == 'd') {
 . -> dir = -1; length = argc-2; start = 2;
 }
 } else {
 ! -> dir = 1; length = argc; start = 1;
 }
 . -> bubble_sort(argv+start, length, dir);
 for (i = 2; i < argc; i++)
 . -> printf("%s ", argv[i]);
 . -> printf("\n");
 return 0;
 }

This listing shows exactly which statements have been executed and
which have not. The results show that the untested block corresponds to
the case where strsort is executed with neither the -a nor -d command
line switches.

Working With TCA
Achieving 100% Test Coverage
The previous analysis tells us that we can achieve 100% test coverage in
this example by executing the strsort program without either of its two
switches.To complete testing, execute the program with the command

strsort aaa bbbb

This produces the following output
[strsort.c:15] **READ_NULL**
>> if(dir * strcmp(a[j-1], a[j]) > 0) {

 Reading null pointer: <argument 2>

 Stack trace where the error occurred:
 strcmp() (interface)
 bubble_sort() strsort.c, 15
 main() strsort.c, 41

Memory corrupted. Program may crash!!

Insure trapped signal: 11

 Stack trace where the error occurred:
 strcmp() ../sysdeps/generic/
strcmp.c, 39
 strcmp() (interface)
 bubble_sort() strsort.c, 15
 main() strsort.c, 41
Segmentation violation
Abort (core dumped)
Exit 134

which indicates that Insure++ has found an error in this code block.
(Finding and fixing this error is left as an exercise for you. Remember that
if you built the program with the -Zcov option, this bug would not have
been detected by Insure++).
145

Working With TCA

146
However, when the command tca tca.log is executed, the following
output is produced

COVERAGE SUMMARY
================
 0 blocks untested
 13 blocks tested

100% covered

which indicates that the application has now been 100% tested.

This means that the set of test cases that have been run, including this
last one, completely exercised all the code in this application. It makes
sense to incorporate these test cases (in conjunction with Insure++) into a
quality assurance test suite for this code.

There are several .psrc options you can use to control coverage
analysis. These are documented in “Configuration Options” on page 162.

How to Use Coverage Analysis
If you are using Insure++, coverage analysis information will be
automatically built into your program. At any time after you have run your
code you can use the tca command to find any blocks which have not
been executed. For clarity, the process is broken down into three steps.

• Compiling applications and building their coverage analysis data-
base (usually named tca.map).

• Running test cases against applications that have been compiled
with coverage analysis enabled, which creates entries in the TCA
log file (usually named tca.log).

• Running the TCA analysis tool to generate coverage analysis
reports from the given coverage log file(s).

You can make your program displays a coverage analysis report when it
exits by adding the

insure++.summarize coverage

option to your .psrc file. The coverage_switches option lets you set
flags to control the output just as though you were passing those switches
to tca.

Working With TCA
Step 1: Compile Time
At compile time, Insure++ creates a database of each file processed,
describing how many blocks and statements are in each file and function.
This database is called a map file, because it provides TCA with a map of
how your program is laid out. By default, the name of this file is tca.map,
but you can change the name of this file by adding a coverage_map_file
value to your .psrc file.

Ideally, all the files in your application should store their information in the
same map file. If your source code is spread across several directories,
you will probably want to set the map filename using a full path. For
example:

insure++.coverage_map_file ~/project.map

If you compile several files simultaneously and they are all trying to
modify the same map file, you may end up with a corrupt map file. In this
case, you will need to delete the original map file and recompile the
application you are interested in.

As mentioned before, if you are only interested in coverage information
and not debugging, you can add the -Zcov option to the insure
command lines that build your program. Remember to use -Zcov
consistently, i.e. at both compilation and linking, if you use it at all.

Step 2: Runtime
At runtime, your program (compiled with Insure++) writes a log file, which
records the blocks that were actually executed during a specific run. By
default, this file is called tca.log, but as with the map file, you can
change the name of this file by adding a coverage_log_file value to
your .psrc file. Normally, each time you run your program the new log
information will be combined with any found in the existing log file, unless
the data is not compatible (because you changed your code and
recompiled, for example).

Another useful option is to generate a new log file each time your
application runs. You can do this by taking advantage of the %n filename
option, for example

insure++.coverage_log_file tca.log.%n
147

Working With TCA

148
In this example, each run would make a new file, such as tca.log.0,
tca.log.1, and so forth. If your program forks, you will need to use this
option so that each child creates its own log file.

Step 3: Using TCA to Display Information
After you have created one or more log files, you can use the tca
command to get the information in which you are interested. TCA
normally sends its reports to stdout. If you would like to use the graphical
version to generate coverage reports, see “The TCA Display” on
page 118 for more information. You can specify any number of log files on
the command line, and TCA will combine the data before displaying the
results. If the log files are not compatible — for example, because they
are from different applications — TCA will throw out the ones that do not
match the first log file.

TCA will also need to read the map file created at compilation time. Since
this name is stored in the log file, you won't normally need to specify it.

By default, TCA will give you a quick summary of how much of your code
was tested. Using different options, you can get detailed reports of
coverage by file, function, or even block. For each block, TCA can tell
you how many times it was executed, summing over all the log files
(unless coverage_boolean was on at compile time, the default setting).

Note: If a single statement spans several lines of source code, TCA treats
the statement as lying on the last line; this is only important for
understanding the output of TCA, and does not effect how coverage
statistics are calculated.

Working With TCA
How Are Blocks Calculated?
Unlike some other coverage analysis tools which work on a line-by-line
basis, TCA is able to group your code into logical blocks. A block is a
group of statements that must always be executed as a group. For
example, the following code has three statements, but only one block.

i = 3;
j = i+3;
return i+j;

Some of the advantages of using blocks over lines are,

• Lines of code which have several blocks are treated separately.

• Grouping equivalent statements into a single block reduces the
amount of data you need to analyze.

• By treating labels as a separate group, you can detect which
paths have been executed in addition to which statements.

Note: Conditional expressions containing && or || are grouped with the
statement they are part of. Also, the three elements of a for loop are
treated as part of the for statement (for example, e1, e2, and e3 in the
code fragment for(e1;e2;e3)).

The following simple test program shows how the blocks are determined.
In this particular example, there are 16 blocks.
/*
 * File: coverage.c
 */

#include <ctype.h>

main(int argc, char **argv) {
 int flag;

 if (argc < 2 || !isdigit(argv[1][0])) {
 printf(“Bad argument(s)\n”);
 exit(1);
 }
 switch(atoi(argv[1])) {
 case 1: case 2: case 3:
 flag = 1;
149

Working With TCA

150
 break;
 case 4:
 case 5:
 flag = 2;
 break;
 default:
 flag = 0;
 break;
 }
 if (flag > 0) flag = 1; else flag = 0;
 printf(“Flag is %\n”, flag ? “1” : “0”);
 exit(0);
}

To achieve coverage, run insure -g -o coverage coverage.c -Zoi
"coverage_boolean off" in the command line. The next code sample
shows the output of tca -ct -ds tca.log after several test runs with
different values (coverage ; coverage 2 ; coverage 2 ; coverage 4
; coverage 7 ; coverage 3).

By looking at this output, you can see which paths have been executed
and which have not. Notice that counts are only given at the beginning of
each block, and not for each statement within each block.
BLOCK USAGE - by file
===========

FILE coverage.c 87% covered: 2 untested / 14 tested

 #include <ctype.h>

 main (int argc, char **argv) {
 int flag;
 6 -> if (argc < 2 || !isdigit(argv[1][0])) {
 1 -> printf("Bad argument(s)\n");
 exit(1);
 }
 5 -> switch(atoi(argv[1])) {
 case 1: case 2: case 3:
0/2/1/3 -> flag = 1;
 break;
 case 4:
 case 5:

Working With TCA
1/0/1 -> flag = 2;
 break;
 default:
 1/1 -> flag = 0;
 break;
 }
5/4/1 -> if (flag > 0) flag = 1; else flag = 0;
 5 -> printf("Flag is %d\n:", flag ? "1" : "0");
 exit(0);
 }

Finally, the next code sample shows the terser output of tca -ds
tca.log. In this instance, only blocks which have not been executed are
marked (corresponding to blocks with a count of zero in the previous
figure). The “!” character symbolizes not executed. For lines with multiple
blocks, you will also see the “.“ character which means that group was
executed. This is so you can easily identify which blocks on that line were
not tested.

Once again, only the first line of code within each block will be marked in
this fashion. If you are using the graphical TCA, the first line of the block
will be colored as executed (red) while the rest of the block will be colored
as not executed (black).
UNTESTED BLOCKS - by file
===============

FILE foo.c 87% covered: 2 untested / 14 tested

 #include <ctype.h>

 main (int argc, char **argv) {
 int flag;
 . -> if (argc < 2 || !isdigit(argv[1][0])) {
 . -> printf("Bad argument(s)\n");
 exit(1);
 }
 . -> switch(atoi(argv[1])) {
 case 1: case 2: case 3:
!... -> flag = 1;
 break;
 case 4:
 case 5:
151

Working With TCA

152
 .!. -> flag = 2;
 break;
 default:
 .. -> flag = 0;
 break;
 }
 ... -> if (flag > 0) flag = 1; else flag = 0;
 . -> printf("Flag is %d\n:", flag ? "1" : "0");
 exit(0);
 }

The TCA Display
The TCA display is a graphical representation of the reports generated
during runtime. By utilizing this tool, you will be able to view your tca.log
files with ease. Much like Insra, TCA allows you to load and save files,
browse through source code, and even access online help.

The TCA Display may be invoked by calling tca with the -X switch along
with any other command line options.

The following subset of TCA command line options are meaningful for the
graphical tool, while the remaining unsupported ones are silently ignored.

Command Explanation

-df Display by function

-do Display be object/class

-dF Display by file

-dd Display by directory

-ns Simple function names

-ne Extended function name - include argument types

-nm Include modifiers const/volatile in function arguments

-ff name Only show coverage related to function “name.” This
option only applies when -df or -dF is also specified.

Working With TCA
Loading A Report File
By default, TCA displays a report based on the log files that were included
in the command line when the program was started. Coverage statistics
from additional files may be included in the report by clicking on the Load
button and selecting a new log file. The data contained in the newly
selected log file is combined with the existing data and a new report is
generated.

-fo name Only show coverage related to object “name.” This
option applies when -do is also specified.

-fF name Only show coverage related to file “name.” “name”
must include the full path to the file. This option only
applies when -dF or -df is also specified.

-fd name Only show coverage related to directory “name.” This
option only applies when -dd is also specified.

-s {keys} Sort output by keys (d, F, n, %, #, b, 1)

-ct Show hit counts in the source browser.

Command Explanation
153

Working With TCA

154
Browsing The Source
The Browse button generates a new window containing the next level of
coverage detail. For example, if you are currently displaying a report “by
directory,” clicking Browse will open a new window displaying a report "by
file" for that directory. If you click Browse again, you will get another
window displaying a report "by function" for the file(s). Clicking Browse a
final time displays the source code itself, annotated with coverage
information for each block.

Double-clicking on a line in the display is the equivalent to selecting a line
and clicking the Browse button.

Working With TCA
155

Working With TCA

156
Reports

The level of detail displayed may be changed by clicking on the Reports
button. A dialog box will appear, allowing you to choose from one of four
report types: by directory, by file, by function, or by class.

Working With TCA
Sorting
The order in which the coverage information is presented may be
modified by clicking on the Sort button. A dialog box will appear in which
you can enter the sort keys to be used. Any combination of the following
keys may be used.

For example, in order to sort by percent covered and decide collisions by
the function name, the sort key string should be %f. The current sort key
string is displayed on the status bar.

Message
This button becomes active when TCA cannot perform a given task.
Clicking it opens a window that describes the error(s).

Help
Online help can be accessed in two ways. Context-sensitive help can be
accessed by clicking on the Help button, which causes a question mark
cursor to replace the normal arrow, and then clicking on an area of the
GUI. If there is help available for that area or button, a window is
displayed with information about how to use the area or button that you
clicked. You can also access help from the TCA menu bar.

Sort Keys Explanation

d by directory

F by file name

f by function

% by percent covered

by number of hits

b by number of blocks
157

Working With TCA

158
Setting Preferences
The coverage analysis process consists of the following three stages:

• Compiling applications with Insure++ and building their coverage
analysis database (usually named tca.map).

• Running test cases against applications that have been compiled
with coverage analysis enabled, which creates entries in the TCA
log file (usually named tca.log).

• Running the tca analysis tool to see the coverage analysis
results.

The sections below each describe options appropriate to one of these
stages.

Compiling
insure++.coverage_boolean [on|off]
If set to on, the only data that will be stored is whether or not each block
was executed. If off, the number of times each block was executed is
also recorded. Setting this option to on will cause your program to compile
and run slightly faster.

insure++.coverage_map_data [on|off]
If set to on, coverage analysis data is collected whenever applications are
compiled. Such applications are then candidates for collecting coverage
analysis data at runtime. Setting this option to off disables this. Applica-
tions must be compiled with this option on before the runtime coverage
analysis options have any effect.

insure++.coverage_map_file [filename]

Specifies the name of the file to which the coverage analysis database
will be written. Filenames may be specified using any of the standard
methods that make sense at compile time. See “Filenames” on page 165.
For example, you cannot use %p or %D with this option. If this option is not
specified, the default filename tca.map is used.

Working With TCA
Running
insure++.coverage_banner [on|off]
If set to on, a message is displayed at runtime indicating the file to which
coverage analysis data will be written. Setting this to off disables this
message.

insure++.coverage_log_data [on|off]
If set to on, coverage analysis data is collected whenever applications
which have been compiled for coverage analysis are executed. Setting
this option to off disables this.

insure++.coverage_log_file [filename]

Specifies the name of the file to which coverage analysis data will be writ-
ten. Filenames may be specified using any of the standard methods.
Refer to “Filenames” on page 165 for appropriate specification methods.
If this option is not specified, the default filename tca.log is used.

insure++.coverage_overwrite [on|off]
Indicates how data from successive application runs will be merged with
any existing data. If on the existing log file will be overwritten each time
the application runs. If this is turned off, then each run causes new data
to be added to the existing log file to form a new, combined result. In this
mode, the log file data will still be discarded if the executable has changed
since the last recorded log data.

insure++.coverage_switches switches

Specifies the command line arguments to be passed to the tca command
when it is executed as a result of a “summarize coverage” option.
159

Working With TCA

160
Running TCA
registertool TCA version

Used for internal maintenance. This option should not be modified.

tca.password arg1 arg2 arg3

Used for internal maintenance. This option should not be added or
modified by hand. Licenses should be managed with pslic.

Building a Test Suite
Now that you have all this coverage analysis information, what's the best
way to use it? Typically, you will have several tests for your code designed
to exercise various features. Together, these tests make a test suite. After
you have run your tests, use TCA to discover which blocks have not been
executed. This will indicate deficiencies in your test suite.

At this point, you should create more tests to try and exercise the code
that was missed by your test suite so far. After you have created more
tests, you can repeat the process. If the goal of 100% coverage is
unreachable, you will need to make a subjective decision about how
thorough you can afford to be.

This process is illustrated in the following flow diagram:

Working With TCA
Create test suite

Run test suite

 100%
Covered?

Done!

No

Yes
161

Configuration Options

162
ReferenceConfiguration Options
Insure++ programs read options from files called .psrc, which may exist
at various locations in the file system. These options control the behavior
of Insure++ and programs compiled with Insure++. The files are
processed in the order specified below.

• The file .psrc in the appropriate lib and compiler subdirectories
of the main Insure++ installation directory. For example:

 /usr/local/insure/lib.solaris/cc/.psrc

or

/usr/local/insure/lib.aix5/xlC/.psrc

• The file .psrc in the main installation directory.

• A file .psrc in your $HOME directory, if it exists.

• A file .psrc in the current working directory, if it exists.

• Files specified with the -Zop switch and individual options speci-
fied with the -Zoi switch to the insure command in the order
present on the command line.

In each case, options found in later files override those seen earlier. All
files mentioned above will be processed and the options set before any
source files are processed.

Typically, compiler-dependent options are stored in the first location, site-
dependent options are stored in the second location, user-dependent
options are stored in the third location, and project-dependent options are
stored in the fourth location. -Zop is commonly used for file-dependent
options, and -Zoi is commonly used for temporary options.

Configuration Options
Working on Multiple Platforms Or
With Multiple Compilers
Many projects involve porting applications to several different platforms or
the use of more than one compiler. Insure++ deals with this by using two
built-in variables, which denote the machine architecture on which you
are running and the name of the compiler you are using. Anywhere that
you would normally specify a pathname or filename, you can then use
these values to switch between various options, each specific to a
particular machine or compiler.

In the compiler-default .psrc files, there are several interface_library
options of the form

Insure++.InterfaceLibrary
$PARASOFT/lib.%a/%c/builtin.tqi \
$PARASOFT/lib.%a/libtqsiic%c.a

Despite appearances, the PARASOFT variable used above is not a true
environment variable. If the PARASOFT environment variable is not set by
the user, it will be expanded automatically by Insure++.

Cross-Compiler Issues
You can use the new -Ztarget option to support cross compiling using
the gcc or g++ compilers for the linux2, linux_ppc, and linux_mips
architectures. To use the -Ztarget option, follow these steps:

1. Install Insure++ 6.1 for linux2, linux_ppc, and/or linux_mips
into the same directory.

2. Set Insure++.Compiler <full path to your cross com-
piler> in the .psrc file.

3. Set Insure++.CompilerAcronym <g++/gcc> in the .psrc file.
163

Configuration Options

164
For example, to cross compile the file hello.c for the Linux MIPS
architecture from Linux x86:

1. cd to the ../examples/c directory:

2. At the command prompt, type:
insure++ -g -o hello hello.c -Ztarget linux_mips -Zoi "com-
piler <cross>" -Zoi "compilerAcronym gcc"

This will cross-compile the file for the Linux MIPS architecture using the
x86 platform and the gcc compiler.

Option Values
The following sections describe the Insure++ configuration options.
Options are divided into two classes: compile time and runtime. Modifying
one of the compile time options requires that files be recompiled before it
can take effect. The runtime options merely require that the program be
executed again.

Some options have default values, which are printed in the following
section in boldface.

Configuration Options
Filenames
A number of the Insure++ options can specify filenames for various
configuration and/or output files. You may either enter a simple filename
or give a template which takes the form of a string of characters with
tokens such as %d, %p, or %V embedded in it. Each of these is expanded to
indicate a certain property of your program as indicated in the following
tables. The first table lists the options that can be used at both compile
and runtime:

This second table lists the tokens available only at runtime:

Key Meaning

%a Machine architecture on which you are running. For exam-
ple, solaris, aix4, hp10, and so on.

%c Abbreviated name of the compiler you are using. For exam-
ple, cc, gcc, xlC.

%r Insure++ version number. For example, 6.1

%R Insure++ version number without periods (.). For example,
version 6.1 becomes 61.

Key Meaning

%d Time of program compilation in format: YYYYMMDDHHMMSS

%D Time of program execution in format: YYYYMMDDHHMMSS

%n Integer sufficient to make filename unique, starting at 0

%p Process I.D.

%v Name of executable

%V Directory containing executable
165

Configuration Options

166
Example One
The name template report_file %v-errs.%D when executed with a
program called foo at 10:30 a.m. on the 21st of December 2001, might
generate a report file with the name foo-errs.20011221103032.

The last two digits are the seconds after 10:30 on which execution began.
You can also include environment variables in these filenames.

Example Two
For TCA, the option coverage_map_file tca.map.%a.%c might gener-
ate a report file with the name tca.map.sun4.cc

You can also include environment variables in these filenames so that
$HOME/tca/tca.map.a%.c%

generates the same filename as the previous example, but also ensures
that the output is placed in the tca sub-directory of the user’s home direc-
tory.

Configuration Options
Advanced Configuration Options
Used by Insure++
Compiling/Linking
insure++.c_as_cpp [on|off]
Specifies whether files with the .c extension should be treated as C++
source code. With this option off, Insure++ will treat files with the .c
extension as C code only. If you use C++ code in .c files, you should turn
this option on.

insure++.checking_uninit [on|off]
Specifies that the code to perform flow-analysis and check for
uninitialized variables should not be inserted. Runtime uninitialized
variable checking is then limited to uninitialized pointer variables. See
“insure++.checking_uninit [on|off]” on page 181 for the runtime effects of
this option.

insure++.compiler compiler_name

Specifies the name of an alternative compiler, such as gcc. This option
overrides all other compiler_* options: compiler_c, compiler_cpp, and
compiler_default. The indicated compiler will be called every time
insure++ is called.

insure++.compiler_c C_compiler_name

Specifies the name of the default C compiler. This compiler will be called
for any .c files. The default is cl. This option is overridden by the
compiler and compiler_acronym options.
167

Configuration Options

168
insure++.compiler_cpp C++_compiler_name

Specifies the name of the default C++ compiler, such as cl. This compiler
will be called for any .cc, .cpp, and .cxx. The default is platform-
dependent. This option is overridden by the compiler and
compiler_acronym options.

insure++.compiler_default [c|cpp]
Specifies whether the default C or C++ compiler should be called to link
when there are no source files on the link line. This option is overridden
by the compiler and compiler_acronym options.

insure++.compiler_deficient
[all|address|cast|enum|member_pointer|
scope_resolution|static_temps|struct_offset|types|
no_address|no_cast|no_enum|no_member_pointer|
no_scope_resolution|no_static_temps|no_struct_offset|
no_types|none]

This options specifies which features are not supported by your compiler.
The default is compiler-dependent.

Keyword Meaning

all Includes all positive keywords

address/no_address

cast/no_cast

enum/no_enum

member_pointer/no_member_pointer

scope_resolution/no_scope_resolution

static_temps/no_static_temps

struct_offset/no_struct_offset

Configuration Options
Different compilers require different levels of this option as indicated in the
compiler-specific README files and in ($PARASOFT)//$compiler.

insure++.compiler_fault_recovery [off|on]
This option controls how Insure++ recovers from errors during
compilation and linking. With fault recovery on, if there is an error during
compilation, Insure++ will simply compile with the compiler only and will
not process that file. If there is an error during linking, Insure++ will
attempt to take corrective action by using the -Zsl option. If this option is
turned off, Insure++ will make only one attempt at each compile and link.

insure++.compiler_fault_recovery_banner [off|on]
When activated, this option prints out a message that fault recovery has
begun when instrumenting a file or when linking.

insure++.compiler_keyword [*|const|inline|signed|volatile]
keyword

Specifies a new compiler keyword (by using the *) or a different name for
a standard keyword. For example, if your compiler uses __const as a
keyword, use the option insure++.compiler_keyword const
__const.

types/no_types

none Compiler handles all cases

Keyword Meaning
169

Configuration Options

170
insure++.compiler_options keyword value

Specifies various capabilities of the compiler in use, as described in the
following table.

Keyword Value Meaning

ansi None Assumes compiler supports ANSI
C (default)

bfunc <type> Function name Specifies that the given function is
a “built-in” that is treated specially
by the compiler. The optional type
keyword specifies that the built-in
has a return type other than int.
Currently, only long, double,
char *, and void * types are
supported.

bfuncnoeval Function name Similar to bfunc <type>.

Specifies that the given function is
a "built-in" function that is treated
specially by the compiler. Unlike
bfunc, this option additionally
specifies that the built-in function's
arguments are not evaluated by
the compiler.

btype Type name Specifies that the given type is a
“built-in” that is treated specially
by the compiler

Configuration Options
bvar <type> Variable name Specifies that the given variable is
a “built-in” that is treated specially
by the compiler. The optional type
keyword specifies that the built-in
has a return type other than int.
Currently, only long, double,
char *, and void * types are
supported.

esc_x Integer Specifies how the compiler treats
the \x escape sequence. Possible
values are:

0 Treat \x as the single char-
acter x (Kernighan and
Ritchie style).

-1 Treat as a hex constant.
Consume as many hex dig-
its as possible.

>0 Treat as a hex constant.
Consume at most the given
number of hex digits.

for_scope nested
notnested
optional

Specifies how for(int i; ...;
...) is scoped. Possible values
are:
nested New ANSI standard,

always treat as
nested.

notnested Old standard, never
treat as nested.

optional New standard by
default, but old-style
code is detected and
treated properly (and
silently)

Keyword Value Meaning
171

Configuration Options

172
knr None Assumes compiler uses Ker-
nighan and Ritchie (old-style) C

loose None Enables non-ANSI extensions
(default)

namespaces None Specifies that namespace is a key-
word (default)

nonamespaces None Specifies that namespace is not a
keyword

nobtype Type name This option is the opposite of
btype. It specifies that the given
type is not a "built-in" type recog-
nized by the compiler.

For example, in C++, Insure++
treats bool as a built-in type by
default; CompilerOptions nob-
type bool specifies that bool is
not a built-in type.

promote_long None Specifies that integral data types
are promoted to long in expres-
sions, rather than int

sizet d, ld, u, lu Specifies the data type returned
by the sizeof operator, as fol-
lows: d=int, ld=long,
u=unsigned int,
lu=unsigned long.

strict None Disables non-ANSI extensions
(compiler dependent)

Keyword Value Meaning

Configuration Options
insure++.coverage_boolean [on|off]
If set to on, the only data that will be stored is whether or not each block
was executed. If off, the number of times each block was executed is
also recorded. Setting this option to on will cause your program to compile
and run slightly faster.

insure++.coverage_map_data [on|off]
Prompts Insure++ to generate coverage map data for TCA.

insure++.coverage_map_file [filename]

Specifies the full path to the directory where Insure++ writes the tca.map
file.

insure++.coverage_only [on|off]
Compiles and generates coverage information (tca.map). It also compiles
and links source code for TCA.

xfunctype Function name Indicates that the named function
takes an argument which is a data
type rather than a variable (for
example, alignof)

Keyword Value Meaning
173

Configuration Options

174
insure++.error_format string

Specifies the format for error message banners generated by Insure++.
The string argument will be displayed as entered with the macro
substitutions taking place as shown in the following table. The string may
also contain standard C formatting characters, such as \n. For examples,
see “Customizing the Output Format” on page 68.

insure++.file_ignore string

Specifies that any file which matches the string will not be processed by
Insure++, but will be passed straight through to the compiler. The string
should be a glob-style regular expression.

This option allows you to avoid processing files that you know are correct.
This can significantly speed up execution and shrink your code.

Key Expands to

%c Error category (and sub-category if required)

%d Date on which the error occurs (DD-MM-YYYY)

%f Filename containing the error

%F Full pathname of the file containing the error

%h Name of the host on which the application is running

%l Line number containing the error

%p Process ID of the process incurring the error

%t Time at which the error occurred (HH:MM:SS)

Configuration Options
insure++.function_ignore file::function_name

This option tells Insure++ not to instrument the given function (the file
qualifier is optional). This is equivalent to turning off the checking for that
routine. If the function in question is a bottle-neck, this may dramatically
increase the runtime performance of the code processed with Insure++.
function_name can accept the * wildcard.

For example, the option
insure++.function_ignore foo*

turns off instrumentation for the functions foo, foobar, and so on.

insure++.header_ignore string

Specifies that any function in the filename specified by the string will not
be instrumented by Insure++. The string should be a glob-style regular
expression and should include the full path.

This option allows you to avoid doing runtime checking in header files that
you know are correct. This can significantly speed up execution and
shrink your code. Please note, however, that the file must still be parsed
by Insure++, so this option will not eliminate compile time warnings and
errors, only runtime checking.

insure++.init_extension [c|cc|C|cpp|cxx|c++]

This option tells Insure++ to use the given extension and language for the
Insure++ initialization code source file. The extension can be any one of
the Insure++-supported extensions: c (for C code) or cc, cpp, cxx, or c++
(for C++ code). This option only needs to be used to override the default,
which is the extension used by any source files on the insure++
command line. If there are no source files on the command line (for
example, a separate link command), Insure++ will use a c extension by
default.
175

Configuration Options

176
insure++.interface_ignore interface name

This options disables type checking for the specified interface at compile
time. insure++.interface_ignore uses wildcards in the same manner
as insure++.function_ignore.

insure++.linker linker_name

Specifies the name of an alternative linker. This only applies if you are
using the inslink command.

insure++.linker_source source_code

This option tells Insure++ to add the given code to its initialization file.
This can help eliminate unresolved symbols caused by linker bugs.

insure++.linker_stub symbol_name

This option tells Insure++ to create and link in a dummy function for the
given symbol_name. This can help eliminate unresolved symbols caused
by linker bugs.

insure++.lrtCacheDir

Specifies the directory where Insure++ will store instrumented versions of
system libraries. By default, this is set to the "LRT-cache" subdirectory of
the Insure++ installation directory. You may wish to set this option if
Insure++ is installed on a read-only file-system, or on a file-system with
limited disk space. If you change this option, you should move or copy
the existing LRT cache directory, together with its contents, to its new
location.

Configuration Options
insure++.optionfile [filename]

This option specifies a file that Insure++ can use as a secondary .psrc
file. This is helpful if you use environment variables, as you can specify
one .psrc file for one type of system architecture, Linux for example,
and another to use on a second architecture, such as Solaris. This option
is also useful for specifying one .psrc file for a given project, and
another .psrc file for a different project, as in the following example:
optionfile $HOME/.psrc.$ARCH
optionfile $PROJECT/myoptions

In this latter case, the standard bottom up preference is used to determine
which file takes precedence over the other; that is, the .psrc file on
bottom would be used first, then the one above.

insure++.pragma_ignore string

Any pragma which matches the string will be deleted by Insure++. The
string should be a glob-style regular expression.

insure++.rename_files [on|off]
Normally, Insure++ creates an intermediate file which is passed to the
compiler. In some cases, this may confuse debuggers. If this is the case,
you can set this option and Insure++ will then rename the files during
compilation so that they are the same. In this case, an original source file
called foo.c would be renamed foo.c.ins_orig for the duration of the
call to Insure++.

For example, after setting this option, the output to the screen would be:
Renaming source file foo.c to foo.c.ins_orig

or
Restoring foo.c from foo.c.ins_orig
177

Configuration Options

178
insure++.report_banner [on|off]
Controls whether or not a message is displayed on your terminal,
reminding you that error messages have been redirected to a file. See
“The Report File” on page 67 for more information.

insure++.report_file [filename|insra|stderr]
Specifies the name of the report file. Environment variables and various
pattern generation keys may appear in filename. For more information,
see “Filenames” on page 165. Use of the special filename insra tells
Insure++ to send its output to Insra.

insure++.sizeof type value

This option allows you to specify data type sizes which differ from the host
machine, which is often necessary for cross compilation. value should be
the number sizeof(type) would return on the target machine. Allowed
type arguments are char, double, float, int, long, long double, long
long, short, and void *.

insure++.stack_internal [on|off]
If you are using the symbol_table off runtime option you can set this
option to on and recompile your program to get filenames and line
numbers in stack traces without using the symbol table reader. See
“insure++.symbol_table [on|off]” on page 189 for more information.

Configuration Options
insure++.stackpc [on|off]
This option causes Insure++ to add to stack traces the actual address of
the instruction where an error has occurred, as shown in the following
partial error message:
Memory leaked leaving scope: p
Lost block : 0x0804b710 thru 0x0804b719 (10 bytes)

p, allocated at leakscop.c, 9
 malloc() pc: 0x40041719 (interface)
 gimme() pc: 0x08049916 leakscop.c, 9
 main() pc: 0x08049a59 leakscop.c, 15

Stack trace where the error occurred:
 gimme() pc: 0x080499b5 leakscop.c, 10
 main() pc: 0x08049a59 leakscop.c, 15

insure++.string_table [on|off]
Moves the string table into a separate file.

insure++.suppress code

Suppresses compile time messages matching the indicated error code.
Context-sensitive suppression does not apply at compile time. See
“Suppressing Error Messages” on page 73 for more information.

insure++.suppress_output string

Suppresses compile time messages including the indicated error string.
See “Suppressing Other Warning Messages” on page 76 for more
information. For example, to suppress the warning:
[foo.c:5] Warning: bad conversion in assignment: char * =
int *
 >> ptr = iptr;

add the following string to this value:
bad conversion in assignment
179

Configuration Options

180
insure++.temp_directory path

Specifies the directory where Insure++ will write its temporary files, for
example, C:\tmp. The default is the Windows temporary directory. Setting
path to a directory local to your machine can dramatically improve
compile time performance if you are compiling on a remotely mounted file
system.

insure++.uninit_flow [1|2|3|...|100|...|1000]
Insure++ can perform a lot of checks for uninitialized memory at compile
time. This value specifies how hard Insure++ should try to analyze this at
compile time. A high number will make Insure++ run slower at compile
time, but will produce a faster executable. Values over 1000 are not
significant except for very complicated functions.

insure++.unsuppress code

Enables compile time messages matching the indicated error code.
Context sensitive suppression is not supported at compile time. See
“Enabling Error Messages” on page 77 for more information.

insure++.virtual_checking [on|off]
Specifies whether VIRTUAL_BAD error messages will be generated. See
“VIRTUAL_BAD” on page 202 for more information about this error
message.

Configuration Options
Running
insure++.checking_uninit [on|off]
If set to off, this option specifies that the code to perform flow-analysis
and checking for uninitialized variables should not be executed, if present.
See “Compiling/Linking” on page 167 for the compile time effects of this
option. Runtime uninitialized variable checking is then limited to
uninitialized pointer variables.

insure++.checking_uninit_min_size [1|2|3|...]
Specifies the minimum size in bytes of data types on which Insure++
should perform full uninitialized memory checking. The default is 2, which
means that chars will not be checked by default. Setting this option to 1
will check chars, but may result in false errors being reported. These can
be eliminated by using the checking_uninit_pattern option to change
the pattern used (see below).

insure++.checking_uninit_pattern pattern

Specifies the pattern to be used by the uninitialized memory checking
algorithm. The default is deadbeef. pattern must be a valid, 8-digit
hexadecimal value.

insure++.coverage_banner [on|off]
Prompts Insure++ to display a message about coverage information
written to tca.log.

insure++.coverage_log_file [filename]

Specifies the full path to the directory where Insure++ writes the tca.log
file.
181

Configuration Options

182
insure++.coverage_overwrite [on|off]
Determines if the tca.log file will be overwritten on each run.

insure++.demangle [off|on|types|full_types]
Specifies the level of function name demangling in reports generated by
Insure++. If you have a function

void func(const int)

you will get the following results:

insure++.demangle_method [external <filtname>|CC|gcc]

Specifies compiler-specific algorithm for demangling function names.
Currently supported compiler algorithms are C-Front based C++
compilers (for example, CC). If you are using a different compiler,
Insure++ understands most other demangling formats as well. The filter
<filtname> option allows the use of the external demangler filtname. The
default is compiler-dependent. See the compiler level .psrc file, which is in
the directory lib.$ARCH/$COMPILER.

This option is a compiled-in option, so you will need to prepend a ! to the
option in the .psrc file to change the setting at runtime.

Keyword Result

off func__FCi

on func

types func(int)

full_types func(const int)

Configuration Options
insure++.error_format string

Specifies the format for error message banners generated by Insure++.
The string argument is displayed as it is entered, with the macro
substitutions taking place as shown in the compiler_deficient table.
The string may also contain standard C formatting characters, such as \n.
For examples, see “Customizing the Output Format” on page 68.

insure++.exit_hook [on|off]
Normally, Insure++ uses the appropriate atexit, onexit, or on_exit
function call to perform special handling at exit. If for some reason, this is
a problem on your system, you can disable this functionality via the
exit_hook option.

insure++.exit_on_error [0|1|2|3|...]
Causes the user program to quit (with non-zero exit status) after reporting
the given number of errors. The default is 0, which means that all errors
will be reported and the program will terminate normally.

insure++.exit_on_error_banner [on|off]
Normally, when Insure++ causes your program to quit due to the
exit_on_error option, it will print a brief message like the following:
** User selected maximum error count reached: 10. Program
exiting.**

Setting this option to off will disable this message.

insure++.free_delay [0|1|2|3|...|119|...]
This option controls how long the Insure++ runtime holds onto free’d
blocks before allowing them to be reused. This is not necessary for error
detection, but can be useful in modifying the behavior of your program for
stress-testing. The number represents how many freed blocks are held
back at a time--large numbers limit memory reuse, and 0 maximizes
memory reuse.
183

Configuration Options

184
insure++.free_pattern pattern

Specifies a pattern that will be written on top of memory whenever it is
freed. This pattern will be repeated for each byte in the freed region. The
default is 0, which means no pattern will be written.

Note: On some systems whose libraries assume freed memory is still
valid, this may cause your program to crash.

insure++.GusCacheDir

Specifies the directory where Insure++ will store its cache files containing
symbolic debugging information. By default, this is set to the "GUS-
cache" subdirectory of the Insure++ installation directory. You may wish to
set this option if Insure++ is installed on a read-only file-system, or a on
file-system with limited disk space. You may safely delete the contents of
the GUS cache directory when you are not actively using Insure++ (its
contents will be automatically regenerated the next time you use
Insure++).

insure++.ignore_wild [on|off]
Specifies whether Insure++ will do checking for wild pointers. Turning this
option on turns off wild pointer checking.

insure++.leak_combine [none|trace|location]
Specifies how to combine leaks for the memory leak summary report.
Combining by trace means all blocks allocated with identical stack traces
will be combined into a single entry. Combining by location means all
allocations from the same file and line (independent of the rest of the
stack trace) will be combined. none means each allocation will be listed
separately.

Configuration Options
insure++.leak_search [on|off]
Specifies additional leak checking at runtime before a leak is reported.
Requires that the symbol table reader be turned on.

insure++.leak_sort [none|frequency|location|size]
Specifies by what criterion the memory leak summary report is sorted.
Setting this to none may provide better performance at exit if you have
many leaks.

insure++.leak_summary_filter

Controls which blocks are reported in the “leaks detected at exit” and
“outstanding” sections of the leak summary. For example,

insure++.leak_summary_filter *main

restricts the leak summary to those blocks with stack traces ending in
main.

insure++.leak_summary_filter -! * Tcl_Alloc* *

filters out the following leak summary entries:
3607 bytes 3 chunks allocated
malloc()
Tcl_Alloc()
Tcl_NewStringObj()
Tcl_EvalTokens()
Tcl_EvalEx()
Tcl_EvalFile()
TclExecuteByteCode()
Tcl_EvalObjEx()
Tcl_UplevelObjCmd()

insure++.leak_sweep [on|off]
Specifies additional leak checking at the termination of the program.
Requires that the symbol table reader be turned on.
185

Configuration Options

186
insure++.leak_trace [on|off]
This option determines whether or not full stack traces will be shown in
the memory leak summary report.

insure++.new_overhead [0|2|4|6|8|...]

Specifies the number of bytes allocated as overhead each time new[] is
called. The default is compiler-dependent, but is typically 0, 4, or 8.

insure++.optionfile [filename]

This option is described in the Compiling/Linking section of the
Configuration Options. It can be used either during runtime or when
compiling and linking a file or files.

insure++.pointer_slack [0|1|2]
This controls a heuristic in Insure++. When a pointer does not point to a
valid block, but does point to an area 1 byte past the end of a valid block,
does the pointer really point to that block? The value of this argument
controls Insure++’s answer. The default should be changed only if
Insure++ is not working correctly on your program.

Value Meaning

0 Never assume the pointer points to the previous block

1 Assume the pointer points to the previous block if that block
was dynamically allocated

2 Always assume the pointer points to the previous block. This
tends to be incorrect for stack and global variables, since
they are usually adjacent in memory

Configuration Options
insure++.report_banner [on|off]
Controls whether or not a message is displayed on your terminal,
reminding you that error messages have been redirected to a file. For
more information, see “Filenames” on page 165.

insure++.report_file [filename|Insra|stderr]
Specifies the name of the report file. Environment variables and various
pattern generation keys may appear in filename. For more information,
see “Filenames” on page 165. Use of the special filename Insra tells
Insure++ to send its output to Insra.

insure++.report_limit [-1|0|1|2|3|...]
Displays only the first given number of errors of each type at any
particular source line. Setting this option to -1 will show all errors. Setting
it to 0 will only show errors in summary reports, and not at runtime. See
“Displaying Repeated Errors” on page 70 for more information.

insure++.report_overwrite [on|off]
If set to off, error messages are appended to the report file rather than
overwriting it on each run.

insure++.runtime [on|off]
If set to off, no runtime checking or profiling is performed. The program
will run much faster this way. This option can be used to check if a
particular fix has cured a problem, without recompiling the application
without Insure++.
187

Configuration Options

188
insure++.source_path .:/users/boswell/src:/src

This option takes a list of directories in which to search for source files
See “Searching For Source Code” on page 72 for more information. This
will only be necessary if your source code has moved since it was
compiled, as Insure++ remembers where all your source files are located.

insure++.summarize [bugs] [coverage] [leaks] [outstanding]

Generates a summary report of errors. For more information, see the
following links:

• “Report Summaries” on page 77.

• “The Leak Summaries” on page 80.

• “The Coverage Summary” on page 83.

In the latter case, the coverage_switches option is consulted to decide
how to present coverage data; see “Options Used By TCA” on page 190
for more information. The leaks and outstanding reports are affected by
the leak_combine, leak_sort, and leak_trace options. With no
arguments, this option will summarize the bugs and leaks summaries.

Note: This option has changed slightly in versions 3.1 and higher. The old
leak defaults are equivalent to leak_combine location, leak_sort
location, leak_trace off. The old detailed option is replaced by
leak_trace on.

insure++.summarize_on_error [0|1|2|3|...]
Specifies how many errors must be generated before a summary (if
requested) is printed. The default is 0, which means that summaries are
always printed on demand. If the number is 1 or higher, summaries are
only printed if at least the given number of bugs (or leaks) occurs.
Suppressed errors do not count towards this number. If no argument is
given with this option, a value of 1 is assumed.

Configuration Options
insure++.suppress code [{context}]

Suppress error messages matching the given error code and occurring in
the (optionally) specified context. See “Suppressing Error Messages” on
page 73 for more information.

insure++.symbol_banner [on|off]
If set, Insure++ displays a message indicating that the program’s symbol
table is being processed whenever an application starts.

insure++.symbol_table [on|off]
If set to on, Insure++ will read the executable symbol table at startup. This
enables Insure++ to generate full stack traces for third party libraries as
well as for code compiled with Insure++. If this option is turned off, the
stack traces will show only functions compiled with Insure++, but the
application will use less dynamic memory and be faster on startup. To get
filenames and line numbers in stack traces with this option off, you must
compile your program with the stack_internal on option. For more
information, see “Compiling/Linking” on page 167.

insure++.trace [on|off]
Turns program tracing on and off. In order to get file names and line
numbers in the trace output, you must have the stack_internal on
option set when compiling the program. See “Tracing” on page 108 for
more information about program tracing.

insure++.trace_banner [on|off]
Specifies whether to print message at runtime showing file to which the
trace output will be written.
189

Configuration Options

190
insure++.trace_file [filename|stderr]
Specifies the name of the file to which the trace output will be written.
filename may use the same special tokens shown on “Filenames” on
page 165.

insure++.unsuppress code [{context}]

Enables error messages matching the given error codes and occurring in
the (optionally) specified context. See “Suppressing Error Messages” on
page 73 for more information.

Options Used By Insra
For options used by Insra, see “Insra” on page 84.

Options Used By TCA
For options used by TCA, see “Working With TCA” on page 138.

Memory Overflow
Memory Overflow
One of the common errors that Insure++ detects occurs when a program
reads or writes beyond the bounds of a valid memory area. This type of
problem normally generates a READ_OVERFLOW or WRITE_OVERFLOW error
which describes the memory regions being accessed with their addresses
and sizes as shown below.
[hello.c:15] **WRITE_OVERFLOW**
>> strcat(str, argv[i]);

 Writing overflows memory: <argument 1>

 bbbbbbbbbbbbbb
 | 16 | 4 |
 wwwwwwwwwwwwwwwwww

 Writing (w) : 0xbfffefb0 thru 0xbfffefc3 (20 bytes)
 To block (b) : 0xbfffefb0 thru 0xbfffefbf (16 bytes)
 str, declared at hello.c, 11

 Stack trace where the error occurred:
 strcat() (interface)
 main() hello.c, 15

Memory corrupted. Program may crash!!

Overflow Diagrams
The textual information above describes the memory blocks involved in
the overflow operation using their memory addresses and sizes.

To gain a more intuitive understanding of the nature of the problem, a
text-based “overflow diagram” is also shown. This pattern attempts to
demonstrate the nature and extent of the problem by representing the
memory blocks involved pictorially.

bbbbbbbbbbbbbbbbbbbbbbbbbbbb
| 16 | 2 |
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
191

Memory Overflow

192
In this case, the row of b characters represents the available memory
block, while the row of w’s shows the range of memory addresses being
written. The block being written is longer than the actual memory block,
which causes the error.

The numbers shown indicate the size, in bytes, of the various regions and
match those of the textual error message.

The relative length and alignment of the rows of characters is intended to
indicate the size and relative positioning of the memory blocks which
cause the error. The above case shows both blocks beginning at the
same position with the written block extending beyond the end of the
memory region. If the region being written extended both before and after
the available block, a diagram such as the following would have been
displayed.

bbbbbbbbbbbbbbbbbbbbbbbbbbbb
| 5 | 16 | 2 |
www

Completely disjointed memory blocks are indicated by a diagram of the
form

bbbbbbbbbbbbbbbbbb
| 4 | 40 | 16 |
wwwwwww

Similar diagrams appear for both READ_OVERFLOW and WRITE_OVERFLOW
errors. In the former case, the block being read is represented by a row of
r characters instead of w’s. Similarly, the memory regions involved in
parameter size mismatch errors are indicated using a row of p characters
for the parameter block. See “PARM_BAD_RANGE” on page 283 for
more information.

Insure++ API
Insure++ API
This section lists the Insure++ functions that can be called from an
application program.

If you are inserting these routines into your source code, you might want
to use the pre-processor symbol __INSURE__ so that they will only be
called when compiling with the appropriate tools. For example:

void grind_away() {
#ifdef __INSURE__

 _Insure_checking_enable(0);
 //disables Insure++ checking

#endif
... code ...

#ifdef __INSURE__
 _Insure_checking_enable(1);
 //enables Insure++ checking

#endif
}

In this way you can use the same source code when compiling with or
without Insure++.

You will also need to add prototypes for these functions to your code,
particularly if you are calling these C functions from C++ code. Make sure
that in this case your prototype is properly marked extern "C".
193

Insure++ API

194
Control Routine
This routine affects the behavior of Insure++ and is normally called from
within your source code.
void _Insure_printf(char *fmt,[,arg...]);

Causes Insure++ to add the given character string to its output.

Memory Block Description Routines
• size_t _Insure_list_allocated_memory(unsigned int

mode)

Prints the total number of allocated blocks and the total number of
bytes allocated. If mode is set to 2, Insure++ lists all allocated
memory blocks and their sizes. If mode is set to 1, Insure++ lists
only newly allocated or re-allocated blocks (blocks allocated or
re-allocated since the last time this function was called). If mode
is set to 0, Insure++ does not list any blocks; it only prints the
total allocation. This function returns the total number of bytes
allocated.

• void _Insure_mem_info(void *ptr);

Displays all information known about the memory block whose
address is ptr. For example, the following code

 #include <stdlib.h>

 main()
 {
 char *p, buf[128];

 p = malloc(100);
 #ifdef __INSURE__
 _Insure_mem_info(buf);
 _Insure_mem_info(p);
 #endif
 ...

Insure++ API
might generate the following output
 Pointer : 0xf7fff74c (stack)
 Offset : 0 bytes
 In block : 0xf7fff74c thru 0xf7fff7cb (128 bytes)
 buf, declared at foo.c, 4
 Pointer : 0x00024b98 (heap)
 Offset : 0 bytes
 In block : 0x00024b98 thru 0x00024bfb (100 bytes)

 p, allocated at foo.c, 6

• void _Insure_ptr_info(void **ptr);

Displays all information about the pointer whose address is
passed. For example, the code

 #include <stdlib.h>

 main()
 {
 char *p, buf[128];

 p = malloc(100);
 #ifdef __INSURE__
 _Insure_ptr_info(&p);
 #endif

...

might generate the following output
 Pointer : 0x00024b98 (heap)
 Offset : 0 bytes
 In block : 0x00024b98 thru 0x00024bfb (100 bytes)

 p, allocated at foo.c, 6
195

Insure++ API

196
• void _Insure_leak_summary()

Prompts Insure++ to report a leak summary at various points dur-
ing execution. If the leak_sweep option is enabled, this function
prompts Insure++ to mark and sweep all heap blocks.

Note: leak_sweep should always be enabled when using this
function). If the summarize leaks and/or summarize outstand-
ing options are set, this function prompts Insure++ to report a
leak summary. It also notifies Inuse of all leaked heap blocks.

This function may be called repeatedly throughout a process’s
lifetime. This is useful for monitoring leaks in a continuously run-
ning process (for example, a server) when the leak_search
option has been disabled to improve performance.

Tracing
_Insure_trace_annotate() and _Insure_trace_enable() can be
used to perform tracing. For details on tracing, see “Tracing” on page 108.

Error Codes

?

Error CodesError Codes
The following sections are intended to provide a reference for the various
error messages generated by Insure++.

The table below lists each error code alphabetically together with its
interpretation and an indication of whether or not it is suppressed by
default. Note: Errors can be unsuppressed using the Suppressions
Control Panel.

The following sections provide a detailed description of each error
including:

• A brief explanation of what problem has been detected.

• An example program that generates a similar error.

• Output that would be generated by running the example, with
annotations indicating what the various pieces of the diagnostic
mean and how they should be interpreted in identifying your own
problems.

Note that the exact appearance of the error message might
depend heavily on how Insure++ is currently configured.

• A brief description of ways in which the problem might be elimi-
nated.

Note: Sometimes you will see values identified as <argument #> or
<return> instead of names from your program. In this case,
<argument n> refers to the nth argument passed to the current function
(i.e. the one where the error was detected), and <return> refers to a
value returned from the function indicated.

Code Meaning Enabled

ALLOC_CONFLICT Mixing malloc/free with new/
delete

Y

(badfree) Free called on block allocated
with new

Y

197

Error Codes

198

?

(baddelete) Delete called on block allo-
cated with malloc

Y

BAD_CAST Cast of pointer loses precision Y

BAD_DECL Incompatible global declara-
tions

Y

BAD_FORMAT Mismatch in format specifica-
tion

N

(sign) int vs. unsigned int N

(compatible) int vs. long, both same size N

(incompatible) int vs. double Y

(other) Wrong number of arguments Y

BAD_INTERFACE Declaration of function in inter-
face conflicts with declaration in
program

Y

BAD_PARM Mismatch in argument type N

(sign) int vs. unsigned int N

(compatible) int vs. long, both same size N

(incompatible) int vs. double Y

(pointer) All pointers are equivalent Y

(union) Require exact match on unions Y

(other) Wrong number of arguments Y

COPY_BAD_RANGE Attempt to copy out-of-range
pointer

N

Code Meaning Enabled

Error Codes

?

COPY_DANGLING Attempt to copy dangling
pointer

N

COPY_UNINIT_PTR Attempt to copy uninitialized
pointer

N

COPY_WILD Attempt to copy wild pointer N

DEAD_CODE Code is not evaluated, has no
effect, or is unreachable

N

(emptyloopbody) Loop body is empty N

(emptystmt) Statement is empty N

(noeffect) Code has no effect N

(notevaluated) Code is not evaluated N

DELETE_MISMATCH Mismatch between new/new[]
and delete/delete[]

N

(bracket) new, delete[] Y

(nobracket) new[], delete Y

EXPR_BAD_RANGE Expression exceeded range N

EXPR_DANGLING Expression uses dangling
pointer

N

EXPR_NULL Expression uses NULL pointer Y

EXPR_UNINIT_PTR Expression uses uninitialized
pointer

Y

EXPR_UNRELATED_
PTRCMP

Expression compares unrelated
pointers

Y

EXPR_UNRELATED_
PTRDIFF

Expression subtracts unrelated
pointers

Y

Code Meaning Enabled
199

Error Codes

200

?

EXPR_WILD Expression uses wild pointer N

FREE_BODY Freeing memory block from
body

Y

FREE_DANGLING Freeing dangling pointer Y

FREE_GLOBAL Freeing global memory Y

FREE_LOCAL Freeing local memory Y

FREE_UNINIT_PTR Freeing uninitialized pointer Y

FREE_WILD Freeing wild pointer Y

FUNC_BAD Function pointer is not a func-
tion

Y

FUNC_NULL Function pointer is NULL Y

FUNC_UNINIT_PTR Function pointer is uninitialized Y

INSURE_ERROR Internal error Y

INSURE_WARNING Output from iic_warning N

LEAK_ASSIGN Memory leaked due to pointer
reassignment

Y

LEAK_FREE Memory leaked freeing block Y

LEAK_RETURN Memory leaked by ignoring
return value

Y

LEAK_SCOPE Memory leaked leaving scope Y

PARM_BAD_RANGE Array parameter exceeded
range

Y

PARM_DANGLING Array parameter is dangling
pointer

Y

Code Meaning Enabled

Error Codes

?

PARM_NULL Array parameter is NULL Y

PARM_UNINIT_PTR Array parameter is uninitialized
pointer

Y

PARM_WILD Array parameter is wild Y

READ_BAD_INDEX Reading array out of range Y

READ_DANGLING Reading from a dangling
pointer

Y

READ_NULL Reading NULL pointer Y

READ_OVERFLOW N

(normal) Reading overflows memory Y

(nonull) String is not NULL-terminated
within range

Y

(string) Alleged string does not begin
within legal range

Y

(struct) Structure reference out of
range

Y

(maybe) Dereferencing structure of
improper size (may be o.k.)

N

READ_UNINIT_MEM Reading uninitialized memory N

(copy) Copy from uninitialized region N

(read) Use of uninitialized value Y

READ_UNINIT_PTR Reading from uninitialized
pointer

Y

READ_WILD Reading wild pointer Y

Code Meaning Enabled
201

Error Codes

202

?

RETURN_DANGLING Returning pointer to local vari-
able

Y

RETURN_FAILURE Function call returned an error N

RETURN_INCONSISTENT Function returns inconsistent
value

N

(level 1) No declaration, returns nothing N

(level 2) Declared int returns nothing Y

(level 3) Declared non-int, returns
nothing

Y

(level 4) Returns different types at differ-
ent statements

Y

UNUSED_VAR Unused variables N

(assigned) Assigned but never used N

(unused) Never used N

USER_ERROR User generated error message Y

VIRTUAL_BAD Error in runtime initialization of
virtual functions

Y

WRITE_BAD_INDEX Writing array out of range Y

WRITE_DANGLING Writing to a dangling pointer Y

WRITE_NULL Writing to a NULL pointer Y

WRITE_OVERFLOW N

(normal) Writing overflows memory Y

(struct) Structure reference out of
range

Y

Code Meaning Enabled

Error Codes

?

(maybe) Dereferencing structure of
improper size (may be o.k.)

N

WRITE_UNINIT_PTR Writing to an uninitialized
pointer

Y

WRITE_WILD Writing to a wild pointer Y

Code Meaning Enabled
203

ALLOC_CONFLICT

204
ALLOC_CONFLICT
Memory Allocation Conflict
This error is generated when a memory block is allocated with new
(malloc) and freed with free (delete).

Insure++ distinguishes between the two possibilities as follows:

• badfree - Memory was allocated with new or new[] and an
attempt was made to free it with free.

• baddelete - memory was allocated with malloc and an attempt
was made to free it with delete or delete[].

Some compilers do allow this, but it is not good programming practice and
could be a portability problem.

Problem #1
The following code shows a typical example of allocating a block of
memory with new and then freeing it with free, instead of delete.
1: /*
2: * File: alloc1.cpp
3: */
4: #include <stdlib.h>
5:
6: int main() {
7: char *a;
8:
9: a = new char;
10: free(a);
11: return 0;
12: }

Diagnosis (at runtime)
1 [alloc1.cpp:10] **ALLOC_CONFLICT**
 >> free(a);

2 Memory allocation conflict: a

ALLOC_CONFLICT
3 free() used to deallocate memory which was allocated
 using new
 a, allocated at:
 main()alloc1.cpp, 9

4 Stack trace where the error occurred:
 main()alloc1.cpp, 10

1. Source line at which the problem was detected.

2. Brief description of the problem.

3. Description of the conflicting allocation/deallocation.

4. Stack trace showing the function call sequence leading to the
error.

Problem #2
The following code shows another typical example of this type of error,
allocating a block of memory with malloc and then freeing it with delete.
1: /*
2: * File: alloc2.cpp
3: */
4: #include <stdlib.h>
5:
6: int main() {
7: char *a;
8:
9: a = (char *) malloc(1);
10: delete a;
11: return 0;
12: }

Diagnosis (at runtime)
1 [alloc2.cpp:10] **ALLOC_CONFLICT**
 >> delete a;

2 Memory allocation conflict: a
205

ALLOC_CONFLICT

206
3 delete operator used to deallocate memory not
 allocated by new
 block allocated at:
 malloc()(interface)
 main()alloc2.cpp, 9

4 Stack trace where the error occurred:
 main()alloc2.cpp, 10

1. Source line at which the problem was detected.

2. Brief description of the problem.

3. Description of the conflicting allocation/deallocation.

4. Stack trace showing the function call sequence leading to the
error.

Repair
This type of error can be corrected by making sure that all your memory
allocations match up.

BAD_CAST
BAD_CAST
Cast of Pointer Loses Precision
Porting code between differing machine architectures can be difficult for
many reasons. A particularly tricky problem occurs when the sizes of data
objects, particularly pointers, differ from that for which the software was
created. This error occurs when a pointer is cast to a type with fewer bits,
causing information to be lost, and is designed to help in porting codes to
architectures where pointers and integers are of different lengths.

Note that compilers will often catch this problem unless the user has
“carefully” added the appropriate typecast to make the conversion “safe”.

Problem
The following code shows a pointer being copied to a variable too small to
hold all its bits.
1: /*
2: * File: badcast.c
3: */
4: main()
5: {
6: char q, *p;
7:
8: p = "Testing";
9: q = (char)p;
10: return 0;
11: }

Diagnosis (during compilation)
1 [badcast.c:9] **BAD_CAST**
2 Cast of pointer loses precision: (char) p
 >> q = (char) p;

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.
207

BAD_CAST

208
Repair
This error normally indicates a significant portability problem that should
be corrected by using a different type to save the pointer expression. In
ANSI C the type void * will always be large enough to hold a pointer
value.

BAD_DECL
BAD_DECL
Global Declarations Are Inconsistent
This error is generated whenever Insure++ detects that a variable has
been declared as two different types in distinct source files. This can
happen when there are two conflicting definitions of an object or when an
extern reference to an object uses a different type than its definition.

In any case, Insure++ proceeds as though the variable definition is
correct, overriding the extern reference.

Problem
In the following example, the file baddecl1.c declares the variable a to
be a pointer,
1: /*
2: * File: baddecl1.c
3: */
4: int *a;

while the file baddecl2.c declares it to be an array type.
1: /*
2: * File: baddecl2.c
3: */
4: extern int a[];
5:
6: main()
7: {
8: a[0] = 10;
9: return (0);
10: }

Diagnosis (at runtime)
 [baddecl2.c:4] **BAD_DECL**
1 >> extern int a[];

2 Incompatible global declarations: a
209

BAD_DECL

210
3 Array and non-array declarations are not equivalent.
 Actual declaration:
 non-array (4 bytes),declared at baddecl1.c, 4
4 Conflicting declaration:
 array of unspecified size,
 declared at baddecl2.c, 4

1. Source line at which the problem was detected.

2. Description of the problem and the object whose declarations
conflict.

3. Brief description of the conflict.

4. Information about the conflicting definitions, including the sizes of
the declared objects and the locations of their declarations.

Repair
The lines on which the conflicting declarations are made are both shown
in the diagnostic report. They should be examined and the conflict
resolved.

In the case shown here, for example, a suitable correction would be to
change the declaration file to declare an array with a fixed size, e.g.,

baddecl1.c, 4: int a[10];

An alternative correction would be to change the definition in
baddecl2.c to indicate a pointer variable, e.g.,

baddecl2.c, 4: extern int *a;

Note that this change on its own will not fix the problem. In fact, if you ran
the program modified this way, you would get another error, EXPR_NULL,
because the pointer a doesn’t actually point to anything and is NULL by
virtue of being a global variable, initialized to zero.

To make this version of the code correct, you would need to include
something to allocate memory and store the pointer in a. For example,
1: /*
2: * File: baddecl2.c (modified)
3: */
4: #include <stdlib.h>
5: extern int *a;

BAD_DECL
6:
7: main()
8: {
9: a = (int *)malloc(10*sizeof(int));
10: a[0] = 10;
11: }

Some applications may genuinely need to declare objects with different
sizes, in which case you can suppress error messages by suppressing
BAD_DECL in the Suppressions Control Panel.
211

BAD_FORMAT

212
BAD_FORMAT
Mismatch In Format Specification
This error is generated when a call to one of the printf or scanf
routines contains a mismatch between a parameter type and the
corresponding format specifier or the format string is nonsensical.

Insure++ distinguishes several types of mismatches which have different
levels of severity as follows:

• sign - Types differ only by sign, e.g., int vs. unsigned int.

• compatible - Fundamental types are different but they happen to
have the same representation on the particular hardware in use,
e.g., int vs. long on machines where both are 32-bits, or int *
vs. long where both are 32-bits.

• incompatible - Fundamental types are different, e.g. int vs.
double.

• other - A problem other than an argument type mismatch is
detected, such as passing the wrong number of arguments.

Error messages are classified according to this scheme and can be
selectively enabled or disabled as described in the section “Repair” on
page 216.

Problem #1
An example of format type mismatch occurs when the format specifiers
passed to one of the printf routines do not correspond to the data, as
shown below.
1: /*
2: * File: badform1.c
3: */
4: main()
5: {
6: double f = 1.23;
7: int i = 99;
8:
9: printf("%d %f\n”, f, i);

BAD_FORMAT
10: }

This type of mismatch is detected during compilation.

Diagnosis (during compilation)
1 [badform1.c:9] **BAD_FORMAT(incompatible)**
2 Wrong type passed to printf (argument 2).

Expected int, found double.
>> printf("%d %f\n", f, i);

[badform1.c:9] **BAD_FORMAT(incompatible)**
Wrong type passed to printf (argument 3).
Expected double, found int.

>> printf("%d %f\n", f, i);

1. Source lines at which problems were detected.

2. Description of the problem and the arguments that are incorrect.

Problem #2
A more dangerous problem occurs when the types passed as arguments
to one of the scanf functions are incorrect. In the following code, for
example, the call to scanf tries to read a double precision value,
indicated by the %lf format, into a single precision value. This will
overwrite memory.
1: /*
2: * File: badform2.c
3: */
4: main()
5: {
6: int a;
7: float f;
8:
9: scanf("%lf”, &f);
10: }

This problem is again diagnosed at compile time (along with the
WRITE_OVERFLOW, which is not shown below).
213

BAD_FORMAT

214
Diagnosis (during compilation)
1 [badform2.c:9] **BAD_FORMAT(incompatible)**
2 Wrong type passed to scanf (argument 2).

Expected double *, found float *.
>> scanf("%lf\n", &f);

1. Source lines at which problems were detected.

2. Description of the problem and the arguments that are incorrect.

Problem #3
A third type of problem is caused when the format string being used is a
variable rather than an explicit string. The following code contains an error
handler that attempts to print out a message containing a filename and
line number. In line 18 of the calling routine, however, the arguments are
reversed.
1: /*
2: * File: badform3.c
3: */
4: char *file;
5: int line;
6:
7: error(format)
8: char *format;
9: {
10: printf(format, file, line);
11: }
12:
13: main()
14: {
15: file = "foo.c";
16: line = 3;
17:
18: error("Line %d, file %s\n");
19: }

BAD_FORMAT
Diagnosis (at runtime)
[badform3.c:10] **BAD_FORMAT(incompatible)**
1 >> printf(format, file, line);

2 Format string is inconsistent:
Wrong type passed to printf (argument 3).

Expected pointer, found int.
3 Format string: "Line %d, file %s\n"

Stack trace where the error occurred:
4 error() badform3.c, 10

main() badform3.c, 18

1. Source line at which the problem was detected.

2. Description of the problem and the argument that is in error.

3. Explanation of the error and the format string that caused it.

4. Stack trace showing the function call sequence leading to the
error.

The error diagnosed in this message is in the incompatible category,
because any attempt to print a string by passing an integer variable will
result in garbage. Note that with some compilers, this program may cause
a core dump because of this error, while others will merely produce
incorrect output.

There is, however, a second potential error in this code in the same line.

Because the arguments are in the wrong order in line 7, an attempt will be
made to print a pointer variable as an integer. This error is in the
compatible class, since a pointer and an integer are both the same size
in memory. Since compatible BAD_FORMAT errors are suppressed by
default, you will not see it. (These errors are suppressed because they
tend to cause unexpected rather than incorrect behavior.)

If you enabled these errors, you would see a second problem report from
this code.

Note: If you run Insure++ on an architecture where pointers and integers
are not the same length, then this second error would also be in the
incompatible class and would be displayed by default.
215

BAD_FORMAT

216
Repair
Most of these problems are simple to correct based on the information
given. Normally, the correction is one or more of the following

• Change the format specifier used in the format string.

• Change the type of the variable involved.

• Add a suitable typecast.

For example, problem #1 can be corrected by simply changing the
incorrect line of code as follows

badform1.c, line 9:printf("%d %f\n", i, f);

The other problems can be similarly corrected.

If your application generates error messages that you wish to ignore, you
can suppress BAD_FORMAT in the Suppressions Control Panel.

This directive suppresses all BAD_FORMAT messages. If you wish to be
more selective and suppress only a certain type of error, you can use the
syntax

BAD_FORMAT(class1, class2, …)

where the arguments are one or more of the identifiers for the various
categories of errors described in “Mismatch In Format Specification” on
page 212.

Similarly, you can enable suppressed types by unsuppressing them in the
Suppressions Control Panel. The problem with the pointer and integer
that was not shown in the current example could be displayed by
unsuppressing BAD_FORMAT(compatible) in the Suppressions Control
Panel. For an example of this option, as well as the remaining
subcategories of BAD_FORMAT, see the example badform4.c.

BAD_INTERFACE
BAD_INTERFACE
Function Declarations Conflict with Interface
Actual declaration of xxx conflicts with interface, or ignoring interface for
xxx conflicts with static or in-line declaration. This error will be generated
any time there is a significant discrepancy between the source code being
processed and an interface to one of the functions in the code. Common
sources of this problem are redeclarations of standard system functions in
your code.

Problem
The following code shows a redeclaration of the function printf which
will conflict with the version of the function expected by the interface.
1: /*
2: * File: badint.c
3: */
4: #include <stdio.h>
5:
6: static void printf(i)
7: int i;
8: {
9: fprintf(stdout, “%d\n”, i);
10: }

Diagnosis (during compilation)
1 [badint.c:6] **BAD_INTERFACE**
2 Ignoring interface for printf: conflicts with
 static or inline declaration.
>> static void printf(i)

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.
217

BAD_INTERFACE

218
Repair
There are several ways to approach solving this problem. The correct
solution for your situation depends upon why the function was redefined
in your code. If this is a version of the function that is used with all of your
code, a permanent solution would be to write a new interface
corresponding to your version of the function. A quicker, more temporary
solution, appropriate if you only use this version of the function
occasionally, would be to temporarily disable the checking of this interface
using the interface_ignore option. This option can be turned on and off
on a per file basis as you work with different code which uses different
versions of the function in question.

BAD_PARM
BAD_PARM
Mismatch In Argument Type
This error is generated when an argument to a function or subroutine
does not match the type specified in an earlier declaration or an interface
file.

Insure++ distinguishes several types of mismatch which have different
levels of severity as follows:

• sign: Types differ only by sign, e.g., int vs. unsigned int.

• compatible: Fundamental types are different but they happen to
have the same representation on the particular hardware in use,
e.g., int vs. long on machines where both are 32-bits.

• incompatible: Fundamental types are different, e.g. int vs.
float.

• union: Forces a declared union argument to match only a similar
union as an actual argument. If this is suppressed, you may pass
any of the individual union elements to the routine, rather than the
union type, or pass a union to a routine which expects one of the
union-elements as an argument.

• other: An error was detected that is not simply a mismatched
argument type, such as passing the wrong number of arguments
to a function.

• pointer: This is not an error class, but a keyword used to sup-
press messages about mismatched pointer types, such as int *
vs. char *. See “Repair” on page 223.

Error messages are classified according to this scheme and can be
selectively enabled or disabled as described in the section “Repair” on
page 223.
219

BAD_PARM

220
Problem #1
The following shows an error in which an incorrect argument is passed to
the function foo.
1: /*
2: * File: badparm1.c
3: */
4: void foo(str)
5: char *str;
6: {
7: return;
8: }
9:
10: main()
11: {
12: int *iptr;
13:
14: foo(iptr);
15: return (0);
16: }

This type of mismatch is detected during compilation.

Diagnosis (during compilation)
1 [badparm1.c:14] **BAD_PARM(incompatible)**
2 Wrong type passed to foo (argument 1: str)

Expected char *, found int *.
>> foo(iptr)

1. Source lines at which problems were detected.

2. Description of the problem and the arguments that are incorrect.

Problem #2
Another simple problem occurs when arguments are passed to functions
in the wrong order, as in the following example.
1: /*
2: * File: badparm2.c
3: */

BAD_PARM
4: long foo(f, l)
5: double f;
6: long l;
7: {
8: return f+l;
9: }
10:
11: main()
12: {
13: long ret = foo(32L, 32.0);
14:
15: printf("%ld\n", ret);
16: return 0;
17: }

Diagnosis (during compilation)
1 [badparm2.c:13] **BAD_PARM(incompatible)**2
2 Wrong type passed to foo (argument 1: f)

Expected double, found long.
>> long ret = foo(32L, 32.0);

[badparm2.c:13] **BAD_PARM(incompatible)**
Wrong type passed to foo (argument 2: l).
Expected long, found double.

>> long ret = foo(32L, 32.0);

1. Source lines at which problems were detected.

2. Description of the problem and the arguments that are incorrect.

Problem #3
The following example illustrates the BAD_PARM(union) error category.
The functions func1 and func2 expect to be passed a union and a
pointer to an integer, respectively. The code in the main routine then
invokes the two functions both properly and by passing the incorrect
types.

Note that this code will probably work on most systems due to the internal
alignment of the various data types. Relying on this behavior is, however,
non-portable.
221

BAD_PARM

222
1: /*
2: * File: badparm4.c
3: */
4: union data {
5: int i;
6: double d;
7: };
8:
9: void func1(ptr)
10: union data *ptr;
11: {
12: ptr->i = 1;
13: }
14:
15: void func2(p)
16: int *p;
17: {
18: *p = 1;
19: }
20:
21: main()
22: {
23: int t;
24: union data u;
25:
26: func1(&u);
27: func1(&t); /* BAD_PARM */
28: func2(&u); /* BAD_PARM */
29: func2(&t);
30: }

Diagnosis (during compilation)
1 [badparm4.c:27] **BAD_PARM(union)**
2 Wrong type passed to func1 (argument 1: ptr)

Expected union data *, found int *.
>> func1(&t); /* BAD_PARM */

[badparm4.c:28] **BAD_PARM(union)**
Wrong type passed to func2 (argument 1: p)
Expected int *, found union data *.

>> func2(&u); /* BAD_PARM */

BAD_PARM
1. Source lines at which problems were detected.

2. Description of the problem and the arguments that are incorrect.

Repair
Most of these problems are simple to correct based on the information
given. For example, Problem #1 can be corrected by simply changing the
code so that the pointer types (char, int) match. The other problems can
be similarly corrected.

If your application generates error messages that you wish to ignore, you
can suppress BAD_PARM in the Suppressions Control Panel.

This directive suppresses all BAD_PARM messages. If you wish to be more
selective and suppress only a certain type of error, you can use the syntax

BAD_PARM(class1, class2, …)

where the arguments are one or more of the identifiers for the various
categories of error described on “Mismatch In Argument Type” on
page 219. Similarly, you can enable suppressed error messages by
selecting Unsuppress in the Action field.

Thus, you could enable warnings about conflicts between types int and
long (on systems where they are the same number of bytes) by
unsuppressing

BAD_PARM(compatible)

In addition to the keywords described on “Mismatch In Argument Type” on
page 219, you can also use the type pointer to suppress all messages
about different pointer types.

For example, many programs declare functions with the argument type
char *, which are then called with pointers to various other data types.
The ANSI standard recommends that you use type void * in such
circumstances, since this is allowed to match any pointer type. If, for
some reason, you cannot do this, you can suppress messages from
Insure++ about incompatible pointer types by suppressing

BAD_PARM(pointer)

in the Suppressions Control Panel.
223

COPY_BAD_RANGE

224
COPY_BAD_RANGE
Copying Pointer Which Is Out-of-Range
This error is generated whenever an attempt is made to copy a pointer
which points outside a valid range. It is not necessarily a serious problem,
but may indicate faulty logic in the coding. Therefore, this error is
suppressed by default.

Problem
The following code illustrates the problem in a simple way. In line 7, the
pointer a is initialized as an array of 10 chars. The next line then attempts
to make pointer b point to an area which has not been allocated. The
resulting pointer is not valid.
1: /*
2: * File: copybad.cpp
3: */
4: int main() {
5: char *a, *b;
6:
7: a = new char [10];
8: b = a + 20;
9: return 0;
10: }

Diagnosis (at runtime)
1 [copybad.cpp:8] **COPY_BAD_RANGE**
>> b = a + 20;

2 Copying pointer which is out-of-range: a + 20

3 Pointer : 0x0007c124
 Actual block: 0x0007c110 thru 0x0007c119 (10 bytes)

a, allocated at:
main() copybad.cpp, 7

COPY_BAD_RANGE
4 Stack trace where the error occurred:
main() copybad.cpp, 8

1. Source line at which the problem was detected.

2. Brief description of the problem.

3. Description of the pointer which is out-of-range.

4. Stack trace showing the function call sequence leading to the
error.

Repair
The simple way to avoid this problem is to not copy the invalid pointer.
There may be an incorrect boundary case in your code causing the
problem.
225

COPY_DANGLING

226
COPY_DANGLING
Copying pointer which has already been freed
This error is generated whenever an attempt is made to copy a pointer to
a block of memory which has been freed. This error is suppressed by
default.

Problem
The following code illustrates the problem in a simple way. In line 7, the
pointer a is freed by calling delete[]. The next line then attempts to copy
from the address a into the variable b. Since a has already been freed, b
will not point to valid memory either.
1: /*
2: * File: copydang.cpp
3: */
4: int main() {
5: char *a = new char [10], *b;
6:
7: delete[] a;
8: b = a;
9: return 0;
10: }

Diagnosis (at runtime)
1 [copydang.cpp:8] **COPY_DANGLING**
 >> b = a;

2 Copying dangling pointer: a

3 Pointer : 0x0007b6a0
In block : 0x0007ebc0 thru 0x0007ebc9 (10 bytes)

a, allocated at:
main() copydang.cpp, 5

4 stack trace where memory was
freed:

COPY_DANGLING
main() copydang.cpp, 7

5 Stack trace where the error occurred:
main() copydang.cpp, 8

1. Source line at which the problem was detected.

2. Brief description of the problem.

3. Description of the pointer which is dangling.

4. Stack trace showing where the dangling pointer was freed.

5. Stack trace showing the function call sequence leading to the
error.

Repair
The simple way to avoid this problem is to not attempt to reuse pointers
after they have been freed. Check that the deallocation that occurs at the
indicated location should have taken place. Also check if pointer you are
(mis)using should be pointing to a block allocated at the indicated place.
227

COPY_UNINIT_PTR

228
COPY_UNINIT_PTR
Copying Uninitialized Pointer
This error is generated whenever an uninitialized pointer is copied.

Note: This error category will be disabled if full uninitialized memory
checking is in effect (the default). In this case, errors are detected in the
READ_UNINIT_MEM category instead.

Problem
The pointer a is declared in line 5, but is never initialized. Therefore, when
an attempt is made in line 7 to copy this pointer to b, an error is
generated.
1: /*
2: * File: copyunin.cpp
3: */
4: int main() {
5: char *a, *b;
6:
7: b = a;
8: return 0;
9: }

Diagnosis (at runtime)
1 [copyunin.cpp:7] **COPY_UNINIT_PTR**
 >> b = a;

2 Copying uninitialized pointer: a

3 Stack trace where the error occurred:
main() copyunin.cpp, 7

1. Source line at which the problem was detected.

2. Brief description of the problem.

COPY_UNINIT_PTR
3. Stack trace showing the function call sequence leading to the
error.

Repair
This problem is usually caused by omitting an assignment or allocation
statement that would initialize a pointer. The example code given could be
corrected by assigning a value to a before reaching line 7.
229

COPY_WILD

230
COPY_WILD
Copying Wild Pointer
This problem occurs when an attempt is made to copy a pointer whose
value is invalid or which Insure++ did not see allocated.

This can come about in a couple of ways.

• Errors in user code that result in pointers that don’t point at any
known memory block.

• Compiling only some of the files that make up an application. This
can result in Insure++ not knowing enough about memory usage
to distinguish correct and erroneous behavior.

Note: This section focuses on the first type of problem described above.
For information about the second type of problem, contact Parasoft’s
Quality Consultants.

Problem
The following code attempts to use the address of a variable but contains
an error at line 9; the address operator (&) has been omitted.

1: /*
2: * File: copywild.c
3: */
4:
5: main()
6: {
7: int a = 123, *b;
8:
9: b = a;
10: return (0);
11: }

COPY_WILD
Diagnosis (at runtime)
 [copywild.c:9] **COPY_WILD**
1 >> b = a;

2 Copying wild pointer: a

3 Pointer : 0x0000007b
Stack trace where the error occurred:

4 main() copywild.c, 9

1. Source line at which the problem was detected.

2. Description of the problem and the name of the parameter that is
in error.

3. Value of the bad pointer.

4. Stack trace showing the function call sequence leading to the
error.

Note that most compilers will generate warning messages for this error
since the assignment uses incompatible types.
231

DEAD_CODE

232
DEAD_CODE
Code Is Not Executed
This error is generated when code is not evaluated, has no effect, or is
unreachable. Insure++ distinguishes between several types of dead code
as follows:

• emptystmt - The statement is empty.

• emptyloopbody - Loop body is empty.

• noeffect - Code has no effect.

• notevaluated - Code is not evaluated.

Error messages are classified according to this scheme and can be
selectively enabled or disabled. By default, this error category is
suppressed.

Problem #1
The following code shows a very tricky, well-disguised error that
demonstrates how hard it is to find problems of this type without Insure++.
The initialization function get_glob is never called by this code. Because
func_X2 is declared as a static function in the Global class, it can be
called directly by main. This is in fact what happens, meaning that line 23
is interpreted as only a call to func_X2. Therefore, an error is generated
since the call to get_glob is never evaluated.
1: /*
2: * File: deadcode.cpp
3: */
4: #include <iostream.h>
5:
6: class Global {
7: public:
8: int j;
9: static int func_X2(int i);
10: };
11:
12: int Global::func_X2(int i) {
13: return i*2;

DEAD_CODE
14: }
15:
16: Global *get_glob() {
17: cerr << “Initializing...”
18: << endl;
19: return (Global *) 0;
20: }
21:
22: int main() {
23: get_glob()->func_X2(2);
24: return 0;
25: }

Diagnosis (during compilation)
1 [deadcode.cpp:23] **DEAD_CODE(notevaluated)**
2 Code is not evaluated
 >> get_glob()->func_X2(2);

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is incorrect.

Repair
This problem can be solved by replacing line 23 with a direct call to
func_X2:

Global::func_X2(2);

or by not making func_X2 a static function.

In some cases, it may be that the dead code was never intended to be
called. If that is the case, the dead code should be eliminated for clarity.

Problem #2
The following code illustrates several other types of DEAD_CODE errors,
this time in C.
1: /*
2: * File: deadcode.c
3: */
4: int main()
233

DEAD_CODE

234
5: {
6: int i = 0;
7:
8: ;
9: i;
10: for (i; i; i)
11: ;
12: return 0;
13: }

Diagnosis (during compilation)
1 [deadcode.c:8] **DEAD_CODE(emptystmt)**
2 Statement is empty
 >> ;
 [deadcode.c:9] **DEAD_CODE(noeffect)**

Code has no effect
 >> i;
 [deadcode.c:10] **DEAD_CODE(noeffect)**

For loop initializer has no effect
 >> for (i; i; i)
 [deadcode.c:10] **DEAD_CODE(noeffect)**

For loop increment has no effect
 >> for (i; i; i)
 [deadcode.c:11] **DEAD_CODE(emptyloopbody)**

Loop body is empty (may be okay)
 >> ;

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is incorrect.

Repair
These errors are usually corrected by removing the superfluous
statement or by modifying the statement so that it does what it was
intended to do, e.g., add a missing increment operator. An empty loop
body may be useful in certain situations. In such a case, you may want to
suppress that subcategory of DEAD_CODE.

DELETE_MISMATCH
DELETE_MISMATCH
Inconsistent Usage of Delete Operator
The current version of ANSI C++ distinguishes between memory
allocated with new and new[]. A delete call must (according to the
standard) match the new call, i.e. whether or not it has [].

Calling new[] and delete may cause the compiler to not call the
destructor on each element of the array, which can lead to serious errors.
Even worse, if the memory was allocated differently, memory may be
corrupted. This is definitely poor practice and unlikely to work with future
releases of the specific compiler.

Problem #1
The following code shows a block of memory allocated with new[] and
freed with delete, without [].
1: /*
2: * File: delmis1.cpp
3: */
4:
5: int main() {
6: int *a = new int [5];
7: delete a;
8: return 0;
9: }

Diagnosis (at runtime)
1 [delmis1.cpp:7] **DELETE_MISMATCH**
 >> delete a;

2 Inconsistent usage of delete operator: a

3 array deleted without []
a, allocated at:

main() delmis1.cpp, 6

4 Stack trace where the error occurred:
main() delmis1.cpp, 7
235

DELETE_MISMATCH

236
1. Source line at which the problem was detected.

2. Description of the problem and the operator which doesn’t match.

3. Brief description of the mismatch.

4. Stack trace showing the function call sequence leading to the
error.

Problem #2
The following code shows a block of memory allocated with new, without
[], and freed with delete[]. This may cause some implementations of
C++ to crash, because the compiler may look for extra bits of information
about how the block was allocated. Some compilers allow this type of
error, extending the ANSI standard. In this case, there would be no extra
bits, so the compiler would attempt to read from an invalid memory
address.
1: /*
2: * File: delmis2.cpp
3: */
4:
5: int main() {
6: int *a = new int;
7: delete[] a;
8: return 0;
9: }

Diagnosis (at runtime)
1 [delmis2.cpp:7] **DELETE_MISMATCH**
 >> delete[] a;

2 Inconsistent usage of delete operator: a

3 [] used to delete a non-array
a, allocated at:

main() delmis2.cpp, 6

4 Stack trace where the error occurred:
main() delmis2.cpp, 7

DELETE_MISMATCH
1. Source line at which the problem was detected.

2. Description of the problem and the operator which doesn’t match.

3. Brief description of the mismatch.

4. Stack trace showing the function call sequence leading to the
error.

Repair
To eliminate this error, you need to change the delete call to match the
new call. In our first example, this could be accomplished by calling
delete[] instead of delete, and vice versa in the second example.
237

EXPR_BAD_RANGE

238
EXPR_BAD_RANGE
Expression Exceeded Range
This error is generated whenever an expression uses a pointer that is
outside its legal range. In many circumstances, these pointers are then
turned into legal values before use (code generated by automated
programming tools such as lex and yacc), so this error category is
suppressed by default. If used with their illegal values, other Insure++
errors will be displayed which can be tracked to their source by re-
enabling this error class.

Problem
In this code, the pointer a initially points to a character string. It is
subsequently incremented beyond the end of the string. When the
resulting pointer is used to make an array reference, a range error is
generated.
1: /*
2: * File: exprange.c
3: */
4: main()
5: {
6: char *a = "test";
7: char *b;
8:
9: a += 6;
10: b = &a[1];
11: return (0);
12: }

Diagnosis (at runtime)
1 [exprange.c:10] **EXPR_BAD_RANGE**
 >> b = &a[1];

2 Expression exceeded range: a[1]

Index used: 1

EXPR_BAD_RANGE
3 Pointer : 0x0000e226
In block : 0x0000e220 thru 0x0000e224 (5

bytes)
a, declared at exprange.c, 6

4 Stack trace where the error occurred:
main() exprange.c, 10

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Description of the memory block to which the out of range pointer
used to point, including the location at which it is declared.

4. Stack trace showing the function call sequence leading to the
error.

Repair
In most cases, this error is caused by incorrect logic in the code
immediately prior to that at which the message is generated. Probably the
simplest method of solution is to run the program under a debugger with a
breakpoint at the indicated location.

If you cannot find the error by examining the values of other variables at
this location, the program should be run again, stopped somewhere
shortly before the indicated line, and single-stepped until the problem
occurs.
239

EXPR_DANGLING

240
EXPR_DANGLING
Expression Uses Dangling Pointer
This error is generated whenever an expression operates on a dangling
pointer - i.e., one which points to either

• A block of dynamically allocated memory that has already been
freed.

• A block of memory which was allocated on the stack in some rou-
tine that has subsequently returned.

Problem
The following code fragment shows a block of memory being allocated
and then freed. After the memory is de-allocated, the pointer to it is used
again, even though it no longer points to valid memory.
1: /*
2: * File: expdangl.c
3: */
4: #include <stdlib.h>
5:
6: main()
7: {
8: char *a = (char *)malloc(10);
9: char b[10];
10:
11: free(a);
12: if(a > b)
13: a = b;
14: return (0);
15: }

Diagnosis (at runtime)
 [expdangl.c:12] **EXPR_DANGLING**
1 >> if(a > b)

2 Expression uses dangling pointer: a > b

EXPR_DANGLING
3 Pointer : 0x00013868
 In block : 0x00013868 thru 0x00013871 (10 bytes)

block allocated at:
malloc() (interface)

main() expdangl.c, 8
stack trace where memory was freed:

main() expdangl.c, 11

4 Stack trace where the error occurred:
main() expdangl.c, 12

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Description of the memory block to which the pointer used to
point, including the location at which it was allocated and subse-
quently freed.

4. Stack trace showing the function call sequence leading to the
error.

Repair
A good first check is to see if the pointer used in the expression at the
indicated line is actually the one intended.

If it appears to be the correct pointer, check the line of code where the
block was freed (as shown in the error message) to see if it was freed
incorrectly.
241

EXPR_NULL

242
EXPR_NULL
Expression Uses NULL Pointer
This error is generated whenever an expression operates on the NULL
pointer.

Problem
The following code fragment declares a pointer, a, which is initialized to
zero by virtue of being a global variable. It then manipulates this pointer,
generating the EXPR_NULL error.
1: /*
2: * File: expnull.c
3: */
4: char *a;
5:
6: main()
7: {
8: char *b;
9:
10: b = &a[1];
11: return (0);
12: }

Diagnosis (at runtime)
1 [expnull.c:10] **EXPR_NULL**
 >> b = &a[1];

2 Expression uses null pointer: a[1]
3 Stack trace where the error occurred:

main() expnull.c, 10

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Stack trace showing the function call sequence leading to the
error.

EXPR_NULL
Repair
One potential cause of this error is shown in this example. The pointer a
is a global variable that will be initialized to zero by the compiler. Since
this variable is never modified to point to anything else, it is still NULL
when first used.

One way the given code can be corrected is by adding an assignment as
follows

/*
 * File: expnull.c (modified)
 */
char *a;
main()
{
 char *b, c[10];
 a = c;
 b = &a[1];
 return (0);
}

It can also be corrected by allocating a block of memory.

A second possibility is that the pointer was set to zero by the program at
some point before its subsequent use and not re-initialized. This is
common in programs which make heavy use of dynamically allocated
memory and which mark freed blocks by resetting their pointers to NULL.

A final common problem is caused when one of the dynamic memory
allocation routines, malloc, calloc, or realloc, fails and returns a NULL
pointer. This can happen either because your program passes bad
arguments or simply because it asks for too much memory. A simple way
of finding this problem with Insure++ is to enable the RETURN_FAILURE
error code (see “RETURN_FAILURE” on page 322) and run the program
again. It will then issue diagnostic messages every time a system call
fails, including the memory allocation routines.
243

EXPR_UNINIT_PTR

244
EXPR_UNINIT_PTR
Expression Uses Uninitialized Pointer
This error is generated whenever an expression operates on an
uninitialized pointer.

Problem
The following code uses an uninitialized pointer.
1: /*
2: * File: expuptr.c
3: */
4: main()
5: {
6: char *a, b[10], c[10];
7:
8: if (a > b)
9: a = b;
10: return (0);
11: }

Diagnosis (at runtime)
1 [expuptr.c:8] **EXPR_UNINIT_PTR**
 >> if (a > b)

2 Expression uses uninitialized pointer: a > b
3 Stack trace where the error occurred:

main() expuptr.c, 8

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Stack trace showing the function call sequence leading to the
error.

EXPR_UNINIT_PTR
Repair
This error is normally caused by omitting an assignment statement for the
uninitialized variable. The example code can be corrected as follows:
1: /*
2: * File: expuptr.c (modified)
3: */
4: main()
5: {
6: char *a, b[10], c[10];
7:
8: a = c;
9: if (a > b)
10: a = b;
11: return (0);
12: }
245

EXPR_UNRELATED_ PTRCMP

246
EXPR_UNRELATED_
PTRCMP
Expression Compares Unrelated Pointers
This error is generated whenever an expression tries to compare pointers
that do not point into the same memory block. This only applies to the
operators >, >=, <, and <=. The operators == and != are exempt from this
case.

The ANSI C-language specification declares this construct undefined
except in the special case where a pointer points to an address one past
the end of a block.

Problem
The following code illustrates the problem by comparing pointers to two
data objects.
1: /*
2: * File: expucmp.c
3: */
4: #include <stdlib.h>
5:
6: main()
7: {
8: char a[10], *b;
9:
10: b = (char *)malloc(10);
11:
12: if(a > b) a[0] = 'x';
13: else a[0] = 'y';
14: return (0);
15: }

Note that the error in this code is not that the two objects a and b are of
different data types (array vs. dynamic memory block), but that the
comparison in line 12 attempts to compare pointers which do not point
into the same memory block. According to the ANSI specification, this is
an undefined operation.

EXPR_UNRELATED_ PTRCMP
Diagnosis (at runtime)
1 [expucmp.c:12] **EXPR_UNRELATED_PTRCMP**
 >> if(a > b) a[0] = 'x';

2 Expression compares unrelated pointers: a > b

 Left hand side: 0xf7fffb8c
3 In block: 0xf7fffb8c thru 0xf7fffb95 (10 bytes)
 a, declared at expucmp.c, 8

 Right hand side: 0x00013870
 In block: 0x00013870 thru 0x00013879 (10 bytes)
 block allocated at:
 malloc() (interface)

 main() expucmp.c, 10
4 Stack trace where the error occurred:

main() expucmp.c, 12

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Description of the two pointers involved in the comparison. For
each pointer, the associated block of memory is shown together
with its size and the line number at which it was declared or allo-
cated.

4. Stack trace showing the function call sequence leading to the
error.

Repair
While this construct is technically undefined according to the ANSI C
specification, it is supported on many machines and its use is fairly
common practice. If your application genuinely needs to use this
construct, you can suppress this message by suppressing

EXPR_UNRELATED_PTRCMP

in the Suppressions Control Panel.
247

EXPR_UNRELATED_ PTRDIFF

248
EXPR_UNRELATED_
PTRDIFF
Expression Subtracts Unrelated Pointers
This error is generated whenever an expression tries to compute the
difference between pointers that do not point into the same memory
block.

The ANSI C language specification declares this construct undefined
except in the special case where a pointer points to an object one past the
end of a block.

Problem
The following code illustrates the problem by subtracting two pointers to
different data objects.
1: /*
2: * File: expudiff.c
3: */
4: #include <stdlib.h>
5:
6: main()
7: {
8: char a[10], *b;
9: int d;
10:
11: b = (char *)malloc(10);
12: d = b - a;
13: return (0);
14: }

Diagnosis (at runtime)
 [expudiff.c:12] **EXPR_UNRELATED_PTRDIFF**
1 >> d = b - a;

2 Expression subtracts unrelated pointers: b - a

EXPR_UNRELATED_ PTRDIFF
Left hand side : 0x00013878
3 In block : 0x00013878 thru 0x00013881 (10 bytes)

b, allocated at:
malloc() (interface)
main() expudiff.c, 11

Right hand side : 0xf7fffb8c
In block : 0xf7fffb8c thru 0xf7fffb95 (10 bytes)

a, declared at expudiff.c, 8
4 Stack trace where the error occurred:

main() expudiff.c, 12

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Description of the two pointers involved in the expression. For
each pointer the associated block of memory is shown together
with its size and the line number at which it was declared or allo-
cated.

4. Stack trace showing the function call sequence leading to the
error.

Repair
While this construct is undefined according to the ANSI C language
specification, it is supported on many machines and its use is fairly
common practice. If your application genuinely needs to use this
construct, you can suppress error messages by suppressing

EXPR_UNRELATED_PTRDIFF

in the Suppressions Control Panel.
249

EXPR_WILD

250
EXPR_WILD
Expression Uses Wild Pointer
This error is generated whenever a program operates on a memory
region that is unknown to Insure++. This can come about in two ways:

• Errors in user code that result in pointers that don’t point at any
known memory block.

• Compiling only some of the files that make up an application. This
can result in Insure++ not knowing enough about memory usage
to distinguish correct and erroneous behavior.

Note: This section focuses on the first type of problem described here.For
information about the second type of problem, contact ParaSoft’s Quality
Consultants.

Problem #1
The following code attempts to use the address of a local variable but
contains an error at line 8 - the address operator (&) has been omitted.
1: /*
2: * File: expwld1.c
3: */
4: main()
5: {
6: int i = 123, j=345, *a;
7:
8: a = i;
9: if(a > &i)
10: a = &j;
11: return (0);
12: }

Diagnosis (at runtime)
 [expwld1.c:9] **EXPR_WILD**
1 >> if(a > &i)

2 Expression uses wild pointer: a > &i

EXPR_WILD
3 Pointer : 0x0000007b

4 Stack trace where the error occurred:
main() expwld1.c,

1. Source line at which the problem was detected.

2. Description of the problem and the name of the parameter that is
in error.

3. Value of the wild pointer.

4. Stack trace showing the function call sequence leading to the
error.

Keep in mind that most compilers will generate warning messages for this
error since the assignment in line 8 uses incompatible types.

Problem #2
A more insidious version of the same problem can occur when using
union types. The following code first assigns the pointer element of a
union but then overwrites it with another element before finally attempting
to use it.
1: /*
2: * File: expwld2.c
3: */
4: union {
5: int *ptr;
6: int ival;
7: } u;
8:
9: main()
10: {
11: int i = 123, j=345;
12:
13: u.ptr = &i;
14: u.ival = i;
15: if(u.ptr > &j)
16: u.ptr = &j;
17: return (0);
251

EXPR_WILD

252
18: }

Note that this code will not generate compile time errors.

Diagnosis (at runtime)
 [expwld2.c:15] **EXPR_WILD**
1 >> if(u.ptr > &j)

2 Expression uses wild pointer: u.ptr > &j

3 Pointer : 0x0000007b

Stack trace where the error occurred:
4 main() expwld2.c, 15

1. Source line at which the problem was detected.

2. Description of the problem and the name of the parameter that is
in error.

3. Value of the bad pointer.

4. Stack trace showing the function call sequence leading to the
error.

Repair
The simpler types of problem are most conveniently tracked in a
debugger by stopping the program at the indicated source line. You
should then examine the illegal value and attempt to see where it was
generated. Alternatively you can stop the program at some point prior to
the error and single-step it through the code leading up to the error.

“Wild pointers” can also be generated when Insure++ has only partial
information about your program’s structure. For more information on this
topic, contact ParaSoft’s Quality Consultants.

FREE_BODY
FREE_BODY
Freeing Memory Block From Body
This error is generated when an attempt is made to de-allocate memory
by using a pointer which currently points into the middle of a block, rather
than to its beginning.

Problem
The following code attempts to free a memory region using an invalid
pointer.
1: /*
2: * File: freebody.c
3: */
4: #include <stdlib.h>
5:
6: main()
7: {
8: char *a = (char *)malloc(10);
9: free(a+1);
10: }

Diagnosis (at runtime)
 [freebody.c:9] **FREE_BODY**
1 >> free(a+1);

2 Freeing memory block from body: a + 1

3 Pointer : 0x000173e9
Stack trace where the error occurred:

4 main() freebody.c, 9

5 **Memory corrupted. Program may crash!!**

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Value of the pointer that is being deallocated.
253

FREE_BODY

254
4. Stack trace showing the function call sequence leading to the
error.

5. Informational message indicating that a serious error has
occurred which may cause the program to crash.

Repair
This is normally a serious error. In most cases, the line number indicated
in the diagnostics will have a simple error that can be corrected.

FREE_DANGLING
FREE_DANGLING
Freeing Dangling Pointer
This error is generated when a memory block is freed multiple times.

Problem
The following code frees the same pointer twice.
1: /*
2: * File: freedngl.c
3: */
4: #include <stdlib.h>
5:
6: main()
7: {
8: char *a = (char *)malloc(10);
9: free(a);
10: free(a);
11: return (0);
12: }

Diagnosis (at runtime)
 [freedngl.c:10] **FREE_DANGLING**
1 >> free(a);

2 Freeing dangling pointer: a

3 Pointer : 0x000173e0
In block : 0x000173e0 thru 0x000173e9 (10 bytes)

block allocated at:
4 malloc() (interface)

main() freedngl.c, 8

5 stack trace where memory was freed:
main() freedngl.c, 9

6 Stack trace where the error occurred:
main() freedngl.c, 10
255

FREE_DANGLING

256
7 **Memory corrupted. Program may crash!!**

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Value of the pointer that is being deallocated.

4. Information about the block of memory addressed by this pointer,
including information about where this block was allocated.

5. Stack trace showing where this block was freed.

6. Stack trace showing the function call sequence leading to the
error.

7. Informational message indicating that a serious error has
occurred which may cause the program to crash.

Repair
Some systems allow memory blocks to be freed multiple times. However,
this is not portable and is not a recommended practice.

The information supplied in the diagnostics will allow you to see the line of
code which previously de-allocated this block of memory. You should
attempt to remove one of the two calls.

If your application is unable to prevent multiple calls to deallocate the
same block, you can suppress error messages by suppressing

FREE_DANGLING

in the Suppressions Control Panel.

FREE_GLOBAL
FREE_GLOBAL
Freeing Global Memory
This error is generated if the address of a global variable is passed to a
routine that de-allocates memory.

Problem
The following code attempts to deallocate a global variable that was not
dynamically allocated.
1: /*
2: * File: freeglob.c
3: */
4: char a[10];
5:
6: main()
7: {
8: free(a);
9: return (0);
10: }

Diagnosis (at runtime)
 [freeglob.c:8] **FREE_GLOBAL**
1 >> free(a);

2 Freeing global memory: a

3 Pointer : 0x00012210
In block : 0x00012210 thru 0x00012217 (8 bytes)

4 a,declared at freeglob.c, 4

Stack trace where the error occurred:
5 main() freeglob.c, 8

6 **Memory corrupted. Program may crash!!**
257

FREE_GLOBAL

258
1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Value of the pointer that is being deallocated.

4. Information about the block of memory addressed by this pointer,
including information about where this block was declared.

5. Stack trace showing the function call sequence leading to the
error.

6. Informational message indicating that a serious error has
occurred which may cause the program to crash.

Repair
Some systems allow this operation, since they keep track of which blocks
of memory are actually dynamically allocated, but this is not portable
programming practice and is not recommended.

In some cases, this error will result from a simple coding mistake at the
indicated source line which can be quickly corrected.

A more complex problem may arise when a program uses both statically
and dynamically allocated blocks in the same way. A common example is
a linked list in which the head of the list is static, while the other entries
are allocated dynamically. In this case, you must take care not to free the
static list head when removing entries.

If your application is unable to distinguish between global and dynamically
allocated memory blocks, you can suppress error messages by
suppressing

FREE_GLOBAL

in the Suppressions Control Panel.

FREE_LOCAL
FREE_LOCAL
Freeing Local Memory
This error is generated if the address of a local variable is passed to free.

Problem
The following code attempts to free a local variable that was not
dynamically allocated.
1: /*
2: * File: freelocl.c
3: */
4: main()
5: {
6: char b, *a;
7:
8: a = &b;
9: free(a);
10: return (0);
11: }

Diagnosis (at runtime)
 [freelocl.c:9] **FREE_LOCAL**
1 >> free(a);

2 Freeing local memory: a

3 Pointer : 0xf7fffb0f
In block : 0xf7fffb0f thru 0xf7fffb0f (1

byte)
4 b,declared at freelocl.c, 6

Stack trace where the error occurred:
5 main() freelocl.c, 9

6 **Memory corrupted. Program may crash!!**
259

FREE_LOCAL

260
1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Value of the pointer that is being deallocated.

4. Information about the block of memory addressed by this pointer,
including information about where this block was declared.

5. Stack trace showing the function call sequence leading to the
error.

6. Informational message indicating that a serious error has
occurred which may cause the program to crash.

Repair
Some systems allow this operation since they keep track of which blocks
of memory are actually dynamically allocated, but this is not portable
programming practice and is not recommended.

In most cases, this error will result from a simple coding mistake at the
indicated source line which can be quickly corrected.

If your application is unable to distinguish between local variables and
dynamically allocated memory blocks, you can suppress error messages
by suppressing

FREE_LOCAL

in the Suppressions Control Panel.

FREE_UNINIT_PTR
FREE_UNINIT_PTR
Freeing Uninitialized Pointer
This error is generated whenever an attempt is made to de-allocate
memory by means of an uninitialized pointer.

Problem
This code attempts to free a pointer which has not been initialized.
1: /*
2: * File: freeuptr.c
3: */
4: main()
5 {
6: char *a;
7: free(a);
8: return (0);
9: }

Diagnosis (at runtime)
 [freeuptr.c:7] **FREE_UNINIT_PTR**
1 >> free(a);

2 Freeing uninitialized pointer: a
Stack trace where the error occurred:

3 main() freeuptr.c, 7

4 **Memory corrupted. Program may crash!!**

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Stack trace showing the function call sequence leading to the
error.

4. Informational message indicating that a serious error has
occurred which may cause the program to crash.
261

FREE_UNINIT_PTR

262
Repair
Some systems appear to allow this operation, since they will refuse to
free memory that was not dynamically allocated. Relying on this behavior
is very dangerous, however, since an uninitialized pointer may
“accidentally” point to a block of memory that was dynamically allocated,
but should not be freed.

FREE_WILD
FREE_WILD
Freeing Wild Pointer
This error is generated when memory is de-allocated that is unknown to
Insure++. This can come about in two ways:

• Errors in user code that result in pointers that don’t point at any
known memory block.

• Compiling only some of the files that make up an application. This
can result in Insure++ not knowing enough about memory usage
to distinguish correct and erroneous behavior.

Note: This section focuses on the first type of problem described here.
For information on the second type of problem, contact ParaSoft’s Quality
Consultants.

A particularly unpleasant problem can occur when using union types.
The following code first assigns the pointer element of a union but then
overwrites it with another element before finally attempting to free the
initial memory block.
1: /*
2: * File: freewild.c
3: */
4: #include <stdlib.h>
5:
6: union {
7: int *ptr;
8: int ival;
9: } u;
10:
11: main()
12: {
13: char *a = (char *)malloc(100);
14:
15: u.ptr = a;
16: u.ival = 123;
17: free(u.ptr);
18: return (0);
19: }
263

FREE_WILD

264
Diagnosis (at runtime)
 [freewild.c:17] **FREE_WILD**
1 >> free(u.ptr);

2 Freeing wild pointer: u.ptr

3 Pointer : 0x0000007b

Stack trace where error occurred:
4 main() freewild.c, 17

1. Source line at which the problem was detected.

2. Description of the problem and the name of the parameter that is
in error.

3. Value of the bad pointer.

4. Stack trace showing the function call sequence leading to the
error.

Repair
This problem is most conveniently tracked in a debugger by stopping the
program at the indicated source line. You should then examine the illegal
value and attempt to see where it was generated. Alternatively you can
stop the program at some point prior to the error and single-step through
the code leading up to the problem.

“Wild pointers” can also be generated when Insure++ has only partial
information about your program’s structure. Contact ParaSoft’s Quality
Consultants for more information on this topic.

FUNC_BAD
FUNC_BAD
Function Pointer Is Not a Function
This error is generated when an attempt is made to call a function through
either an invalid or unknown function pointer.

Problem
One simple way to generate this error is through the use of the union
data type. If the union contains a function pointer which is invoked after
initializing some other union member, this error can occur.

1: /*
2: * File: funcbad.c
3: */
4: union {
5: int *iptr;
6: int (*fptr)();
7: } u;
8:
9: main()
10: {
11: int i;
12:
13: u.iptr = &i;
14: u.fptr();
15: return (0);
16: }

Diagnosis (at runtime)
[funcbad.c:14] **FUNC_BAD**
1 >> u.fptr();

2 Function pointer is not a function: u.fptr

3 Pointer : 0xf7fff8cc
In block : 0xf7fff8cc thru 0xf7fff8cf

4 (4 bytes,1 element)
265

FUNC_BAD

266
i, declared at func-
bad.c, 11

Stack trace where the error occurred:
5 main() funcbad.c, 14

6 **Memory corrupted. Program may crash!!**

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. The value of the pointer through which the call is being
attempted.

4. Description of the memory block to which this pointer actually
points, including its size and the source line of its declaration.

5. Stack trace showing the function call sequence leading to the
error.

6. Informational message indicating that a serious error has
occurred which may cause the program to crash.

Repair
The description of the memory block to which the pointer points should
enable you to identify the statement which was used to assign the
function pointer incorrectly.

FUNC_NULL
FUNC_NULL
Function Pointer Is NULL
This error is generated when a function call is made via a NULL function
pointer.

Problem
This code attempts to call a function through a pointer that has never
been explicitly initialized. Since the pointer is a global variable, it is
initialized to zero by default, resulting in the attempt to call a NULL pointer.
1: /*
2: * File: funcnull.c
3: */
4: void (*a)();
5:
6: main()
7: {
8: a();
9: return (0);
10: }

Diagnosis (at runtime)
 [funcnull.c:8] **FUNC_NULL**
1 >> a();

2 Function pointer is null: a
Stack trace where the error occurred:

3 main() funcnull.c, 8

4 **Memory corrupted. Program may crash!!**

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.
267

FUNC_NULL

268
3. Stack trace showing the function call sequence leading to the
error.

4. Informational message indicating that a serious error has
occurred which may cause the program to crash.

Repair
The most common way to generate this problem is the one shown here,
in which the pointer never was explicitly initialized and is set to zero. This
case normally requires the addition of an assignment statement prior to
the call as shown below.

/*
 * File: funcnull.c (modified)
 */
void (*a)();
extern void myfunc();

main()
{
 a = myfunc;
 a();
 return (0);
}

A second fairly common programming practice is to terminate arrays of
function pointers with NULL entries. Code that scans a list looking for a
particular function may end up calling the NULL pointer if its search
criterion fails. This normally indicates that protective programming logic
should be added to prevent against this case.

FUNC_UNINIT_PTR
FUNC_UNINIT_PTR
Function Pointer Is Uninitialized
This error is generated when a call is made through an uninitialized
function pointer.

Problem
This code attempts to call a function through a pointer that has not been
set.
1: /*
2: * File: funcuptr.c
3: */
4: main()
5: {
6: void (*a)();
7:
8: a();
9: return (0);
10: }

Diagnosis (at runtime)
 [funcuptr.c:8] **FUNC_UNINIT_PTR**
1 >> a();

2 Function pointer is uninitialized: a
Stack trace where the error occurred:

3 main() funcuptr.c, 8

4 **Memory corrupted. Program may crash!!**

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Stack trace showing the function call sequence leading to the
error.
269

FUNC_UNINIT_PTR

270
4. Informational message indicating that a serious error has
occurred which may cause the program to crash.

Repair
This problem normally occurs because some assignment statement has
been omitted from the code. The current example can be fixed as follows:

extern void myfunc();

main()
{
 void (*a)();
 a = myfunc;
 a();
}

INSURE_ERROR
INSURE_ERROR
Internal Errors (Various)
This error code is reserved for fatal errors that Insure++ is unable to deal
with adequately, such as running out of memory or failing to open a
required file.

Unrecognized string values in the Windows Registry or Advanced
Options can also generate this error.
271

INSURE_WARNING

272
INSURE_WARNING
Errors From iic_warning Calls
This error code is generated when Insure++ encounters a call to the
iic_warning interface function.

Example
The following code contains a call to a function called archaic_function
whose use is to be discouraged.
1: /*
2: * File: warn.c
3: */
4: #include <stdio.h>
5:
6: main()
7: {
8: archaic_function();
9: exit(0);
10: }

In order to use the iic_warning capability, we can make an interface to
the archaic_function as follows.
1: /*
2: * File: warn_i.c
3: */
4: void archaic_function(void)
5: {
6: iic_warning(
7: "This function is obsolete");
8: archaic_function();
9: }

INSURE_WARNING
Diagnosis (during compilation)
1 [warn.c:8] **INSURE_WARNING**
2 Use of archaic_function is deprecated.
 >> archaic_function();

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

Repair
This error category is suppressed by default, so you must unsuppress

INSURE_WARNING

in the Suppressions Control Panel before compiling code which uses it.

There are many uses for iic_warning and the INSURE_WARNING error, so
no specific suggestions for error correction are appropriate. Hopefully, the
messages displayed by the system will provide sufficient assistance.
273

LEAK_ASSIGN

274
LEAK_ASSIGN
Memory Leaked Due To Pointer Reassignment
This error is generated whenever a pointer assignment occurs which will
prevent a block of dynamically allocated memory from ever being freed.
Normally this happens because the pointer being changed is the only one
that still points to the dynamically allocated block.

Problem
This code allocates a block of memory, but then reassigns the pointer to
the block to a static memory block. As a result, the dynamically allocated
block can no longer be freed.
1: /*
2: * File: leakasgn.c
3: */
4: #include <stdlib.h>
5:
6: main()
7: {
8: char *b, a[10];
9:
10: b = (char *)malloc(10);
11: b = a;
12: return (0);
13: }

Diagnosis (at runtime)
 [leakasgn.c:11] **LEAK_ASSIGN**
1 >> b = a;

2 Memory leaked due to pointer reassignment: <return>

3 Lost block: 0x000173e8 thru 0x000173f1 (10
bytes)

block allocated at:
malloc() (interface)

LEAK_ASSIGN
 main() leakasgn.c, 10

Stack trace where the error occurred:
4 main() leakasgn.c, 11

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Description of the block of memory that is about to be lost, includ-
ing its size and the line number at which it was allocated.

4. Stack trace showing the function call sequence leading to the
error.

Repair
In many cases, this problem is caused by simply forgetting to free a
previously allocated block of memory when a pointer is reassigned. For
example, the leak in the example code can be corrected as follows:

10: b = (char *)malloc(10);
11: free(b);
12: b = a;

Some applications may be unable to free memory blocks and may not
need to worry about their permanent loss. To suppress these error
messages, suppress

LEAK_ASSIGN

in the Suppressions Control Panel.
275

LEAK_FREE

276
LEAK_FREE
Memory Leaked Freeing Block
This problem can occur when a block of memory contains a pointer to
another dynamically allocated block, as indicated in the following figure.

If the main memory block is freed its memory becomes invalid, which
means that the included pointer can no longer be used to free the second
block. This causes a permanent memory leak.

Parent block

LEAK_FREE
Problem
This code defines PB to be a data structure that contains a pointer to
another block of memory.
1: /*
2: * File: leakfree.c
3: */
4: #include <stdlib.h>
5:
6: typedef struct ptrblock {
7: char *ptr;
8: } PB;
9:
10: main()
11: {
12: PB *p;
13:
14: p = (PB *)malloc(sizeof(*p));
15: p->ptr = malloc(10);
16:
17: free(p);
18: return (0);
19: }

We first create a single PB and then allocate a block of memory for it to
point to. The call to free on the PB then causes a permanent memory
leak, since it frees the memory containing the only pointer to the second
allocated block. This latter block can no longer be freed.

Diagnosis (at runtime)
 [leakfree.c:17] **LEAK_FREE**
1 >> free(p);

2 Memory leaked freeing block: <return>

3 Lost block: 0x00013888 thru 0x00013891 (10
bytes)

block allocated at:
malloc() (interface)
 main() leakfree.c, 15
277

LEAK_FREE

278
Stack trace where the error occurred:
4 main() leakfree.c, 17

1. Source line at which the problem was detected.

2. Description of the problem and the value that is about to be lost.

3. Description of the block of memory that is about to be lost, includ-
ing its size and the line number at which it was allocated.

4. Stack trace showing the function call sequence leading to the
error.

Repair
In many cases, this problem is caused by forgetting to free the enclosed
blocks when freeing their container. This can be corrected by adding a
suitable call to free the memory before freeing the parent block.

Caution must be used when doing this, however, to ensure that the
memory blocks are freed in the correct order. Changing the example in
the following manner, for example, would still generate the same error:

free(p);
free(p->ptr);

because the blocks are freed in the wrong order. The contained blocks
must be freed before their parents, because the memory becomes invalid
as soon as it is freed. Thus, the second call to free in the above code
fragment might fail, because the value p->ptr is no longer valid. It is quite
legal, for example, for the first call to free to have set to zero or otherwise
destroyed the contents of its memory block. (Many systems allow the out
of order behavior, although it is becoming less portable as more and more
systems move to dynamically re-allocated (moveable) memory blocks.)

Some applications may be unable to free memory blocks and may not
need to worry about their permanent loss. To suppress these error
messages in this case suppress

LEAK_FREE

in the Suppressions Control Panel.

LEAK_RETURN
LEAK_RETURN
Memory Leaked By Ignoring Returned Value
This error is generated whenever a function returns a pointer to a block of
memory which is then ignored by the calling routine. In this case, the
allocated memory block is permanently lost and can never be freed.

Problem
This code calls the function gimme, which returns a memory block that is
subsequently ignored by the main routine.
1: /*
2: * File: leakret.c
3: */
4: #include <stdlib.h>
5:
6: char *gimme()
7: {
8: return malloc(10);
9: }
10:
11: main()
12: {
13: gimme();
14: return (0);
15: }

Diagnosis (at runtime)
 [leakret.c:8] **LEAK_RETURN**
1 >> gimme();

2 Memory leaked ignoring return value: <return>

3 Lost block: 0x000173e8 thru 0x000173f1 (10
bytes)

block allocated at:
malloc() (interface)
279

LEAK_RETURN

280
gimme() leakret.c, 8
main() leakret.c, 13

Stack trace where the error occurred:
main() leakret.c, 13

1. Source line at which the problem was detected.

2. Description of the problem and the block that is to be lost.

3. Description of the block of memory that is about to be lost, includ-
ing its size and the line number at which it was allocated.

Repair
This problem usually results from an oversight on the part of the
programmer, or a misunderstanding of the nature of the pointer returned
by a routine. In particular, it is sometimes unclear whether the value
returned points to a static block of memory, which will not need to be
freed, or a dynamically allocated one, which should be.

Some applications may be unable to free memory blocks and may not
need to worry about their permanent loss. To suppress these error
messages in this case, suppress

LEAK_RETURN

in the Suppressions Control Panel.

LEAK_SCOPE
LEAK_SCOPE
Memory Leaked Leaving Scope
This error is generated whenever a function allocates memory for its own
use and then returns without freeing it or saving a pointer to the block in
an external variable. The allocated block can never be freed.

Problem
This code calls the function gimme, which allocates a memory block that is
never freed.
1: /*
2: * File: leakscop.c
3: */
4: #include <stdlib.h>
5:
6: void gimme()
7: {
8: char *p;
9: p = malloc(10);
10: return;
11: }
12:
13: main()
14: {
15: gimme();
16: return (0);
17: }

Diagnosis (at runtime)
 [leakscop.c:10] **LEAK_SCOPE**
1 >> return;

2 Memory leaked leaving scope: <return>

3 Lost block: 0x0003870 thru 0x00013879 (10
bytes)
281

LEAK_SCOPE

282
block allocated at:
malloc() (interface)
gimme() leakscop.c, 9
main() leakscop.c, 15

Stack trace where the error occurred:
4 gimme() leakscop.c, 10

main() leakscop.c, 15

1. Source line at which the problem was detected.

2. Description of the problem and the block that is to be lost.

3. Description of the block of memory that is about to be lost, includ-
ing its size and the line number at which it was allocated.

4. Stack trace showing the function call sequence leading to the
error.

Repair
This problem usually results from an oversight on the part of the
programmer and is cured by simply freeing a block before returning from
a routine. In the current example, a call to free(p) before line 10 would
cure the problem.

A particularly easy way to generate this error is to return from the middle
of a routine, possibly due to an error condition arising, without freeing
previously allocated data. This bug is easy to introduce when modifying
existing code.

Some applications may be unable to free memory blocks and may not
need to worry about their permanent loss. To suppress these error
messages in this case, suppress

LEAK_SCOPE

in the Suppressions Control Panel.

PARM_BAD_RANGE
PARM_BAD_RANGE
Array Parameter Exceeded Range
This error is generated whenever a function parameter is declared as an
array, but has more elements than the actual argument which was
passed.

Problem
The following code fragment shows an array declared with one size in the
main routine and then used with another in a function.
1: /*
2: * File: parmrnge.c
3: */
4: int foo(a)
5: int a[10];
6: {
7: return a[5];
8: }
9:
10: int b[5];
11:
12: main()
13: {
14: int a;
15: a = foo(b);
16: return (0);
17: }

Diagnosis (at runtime)
 [parmrnge.c:6] **PARM_BAD_RANGE**
1 >> {

2 Array parameter exceeded range: a

3 bbbbbb
| 20 | 20 |
ppppppppppp
283

PARM_BAD_RANGE

284
4 Parameter (p) 0xf7fffb04 thru 0xf7fffb2b (40
bytes)

Actual block (b) 0xf7fffb04 thru
0xf7fffb17

(20 bytes, 5 elements)
5 b, declared at parmrnge.c, 10

Stack trace where the error occurred:
foo() parmrnge.c, 6

6 main() parmrnge.c, 15

1. Source line at which the problem was detected.

2. Description of the problem and the name of the parameter that is
in error.

3. Schematic showing the relative layout of the memory block which
was actually passed as the argument (b) and expected parameter
(p). (See “Overflow Diagrams” on page 191.)

4. Description of the memory range occupied by the parameter,
including its length.

5. Description of the actual block of data corresponding to the argu-
ment, including its address range and size. Also includes the
name of the real variable which matches the argument and the
line number at which it was declared.

6. Stack trace showing the function call sequence leading to the
error.

PARM_BAD_RANGE
Repair
This error is normally easy to correct based on the information presented
in the diagnostic output.

The simplest solution is to change the definition of the array in the called
routine to indicate an array of unknown size, i.e., replace line 5 with

parmrnge.c, 5 int a[];

This declaration will match any array argument and is the recommended
approach whenever the called routine will accept arrays of variable size.

An alternative is to change the declaration of the array in the calling
routine to match that expected. In this case, line 10 could be changed to

parmrnge.c, 10 int b[10];

which now matches the argument declaration.
285

PARM_DANGLING

286
PARM_DANGLING
Array Parameter Is Dangling Pointer
This error is generated whenever a parameter declared as an array is
actually passed a pointer to a block of memory that has been freed.

Problem
The following code frees its memory block before passing it to foo.
1: /*
2: * File: parmdngl.c
3: */
4: #include <stdlib.h>
5:
6: char foo(a)
7: char a[10];
8: {
9: return a[0];
10: }
11:
12: main()
13: {
14: char *a;
15: a = malloc(10);
16: free(a);
17: foo(a);
18: return (0);
19: }

Diagnosis (at runtime)
 [parmdngl.c:8] **PARM_DANGLING**
1 >> {

2 Array parameter is dangling pointer: a

3 Pointer : 0x0001adb0
4 In block : 0x0001adb0 thru 0x0001adb9 (10 bytes)

block allocated at:

PARM_DANGLING
malloc() (interface)
 main() parmdngl.c, 15

stack trace where memory was freed:
5 main() parmdngl.c, 16

Stack trace where the error occurred:
 foo() parmdngl.c, 8

6 main() freedngl.c,17

1. Source line at which the problem was detected.

2. Description of the problem and the parameter that is in error.

3. Value of the pointer that was passed and has been deallocated.

4. Information about the block of memory addressed by this pointer,
including information about where this block was allocated.

5. Indication of the line at which this block was freed.

6. Stack trace showing the function call sequence leading to the
error.

Repair
This error is normally caused by freeing a piece of memory too soon. A
good strategy is to examine the line of code indicated by the diagnostic
message which shows where the memory block was freed and check that
it should indeed have been de-allocated.

A second check is to verify that the correct parameter was passed to the
subroutine.

A third strategy which is sometimes useful is to NULL pointers that have
been freed and then check in the called subroutine for this case. Code
similar to the following is often useful

#include <stdlib.h>

char foo(a)
char *a;

{
if(a) return a[0];
return '!';
287

PARM_DANGLING

288
}

main()
{

char *a;
a = (char *)malloc(10);
free(a);
a = NULL;
foo(a);
return (0);

}

The combination of resetting the pointer to NULL after freeing it and the
check in the called subroutine prevents misuse of dangling pointers.

PARM_NULL
PARM_NULL
Array Parameter Is NULL
This error is generated whenever a parameter declared as an array is
actually passed a NULL pointer.

Problem
The following code fragment shows a function which is declared as
having an array parameter, but which is invoked with a NULL pointer. The
value of array is NULL because it is a global variable, initialized to zero by
default.
1: /*
2: * File: parmnull.c
3: */
4: int foo(a)
5: int a[];
6: {
7: return 12;
8: }
9:
10: int *array;
11:
12: main()
13: {
14: foo(array);
15: return (0);
16: }

Diagnosis (at runtime)
[parmnull:6] **PARM_NULL**
1 >> {

2 Array parameter is null: a
Stack trace where the error occurred:

3 foo() parmnull.c, 6
main() parmnull.c, 14
289

PARM_NULL

290
1. Source line at which the problem was detected.

2. Description of the problem and the name of the parameter that is
in error.

3. Stack trace showing the function call sequence leading to the
error.

Repair
A common cause of this error is the one given in this example, a global
pointer which is initialized to zero by the compiler and then never
reassigned. The correction for this case is to include code to initialize the
pointer, possibly by allocating dynamic memory or by assigning it to some
other array object.

For example, we could change the main routine of the example to
main()
{
 int local[10];

 array = local;
 foo(array);
}

This problem can also occur when a pointer is set to NULL by the code
(perhaps to indicate a freed block of memory) and then passed to a
routine that expects an array as an argument.

In this case, Insure++ distinguishes between functions whose arguments
are declared as arrays

int foo(int a[])
{

and those with pointer arguments
int foo(int *a)
{

The latter type will not generate an error if passed a NULL argument, while
the former will.

A final common problem is caused when one of the dynamic memory
allocation routines, malloc, calloc, or realloc, fails and returns a NULL

PARM_NULL
pointer. This can happen either because your program passes bad
arguments or simply because it asks for too much memory. A simple way
of finding this problem with Insure++ is to enable the RETURN_FAILURE
error code (see “RETURN_FAILURE” on page 322) and run the program
again. It will then issue diagnostic messages every time a system call
fails, including the memory allocation routines.

If your application cannot avoid passing a NULL pointer to a routine, you
should either change the declaration of its argument to the second style
or suppress these error messages by suppressing

PARM_NULL

in the Suppressions Control Panel.
291

PARM_UNINIT_PTR

292
PARM_UNINIT_PTR
Array Parameter Is Uninitialized Pointer
This error is generated whenever an uninitialized pointer is passed as an
argument to a function which expects an array parameter.

Problem
This code passes the uninitialized pointer a to routine foo.
1: /*
2: * File: parmuptr.c
3: */
4: char foo(a)
5: char a[10];
6: {
7: return a[0];
8: }
9:
10: main()
11: {
12: char *a;
13:
14: foo(a);
15: return (0);
16: }

Diagnosis (at runtime)
 [parmuptr.c:6] **PARM_UNINIT_PTR**
1 >> {

2 Array parameter is uninitialized pointer: a

Stack trace where the error occurred:
3 foo() parmuptr.c, 6

main() parmuptr.c, 14

1. Source line at which the problem was detected.

PARM_UNINIT_PTR
2. Description of the problem and the argument that is in error.

3. Stack trace showing the function call sequence leading to the
error

Repair
This problem is usually caused by omitting an assignment or allocation
statement that would initialize a pointer. The code given, for example,
could be corrected by including an assignment as shown below.

/*
 * File: parmuptr.c (Modified)
 */
...
main()
{
 char *a, b[10];
 a = b;
 foo(a);
}

293

PARM_WILD

294
PARM_WILD
Array Parameter Is Wild
This error is generated whenever a parameter is declared as an array but
the actual value passed when the function is called points to no known
memory block.

This can come about in several ways:

• Errors in user code that result in pointers that don’t point at any
known memory block.

• Compiling only some of the files that make up an application. This
can result in Insure++ not knowing enough about memory usage
to distinguish correct and erroneous behavior.

Note: This section focuses on the first type of problem described above.
For information about the second type of problem, contact ParaSoft’s
Quality Consultants.

Problem #1
The following code attempts to pass the address of a local variable to the
routine foo but contains an error at line 14 - the address operator (&) has
been omitted.
1: /*
2: * File: parmwld1.c
3: */
4: void foo(a)
5: int a[];
6: {
7: return;
8: }
9:
10: main()
11: {
12: int i = 123, *a;
13:
14: a = i;
15: foo(a);

PARM_WILD
16: return (0);
17: }

Diagnosis (at runtime)
 [parmwld1.c:6] **PARM_WILD**
1 >> {

2 Array parameter is wild: a

3 Pointer : 0x0000007b

Stack trace where the error occurred:
4 foo() parmwld1.c, 6

main() parmwld1.c, 15

1. Source line at which the problem was detected.

2. Description of the problem and the name of the parameter that is
in error.

3. Value of the bad pointer.

4. Stack trace showing the function call sequence leading to the
error.

Note that most compilers will generate warning messages for this error
since the assignment uses incompatible types.

Problem #2
A more insidious version of the same problem can occur when using
union types. The following code first assigns the pointer element of a
union but then overwrites it with another element before finally passing it
to a function.
1: /*
2: * File: parmwld2.c
3: */
4: union {
5: int *ptr;
6: int ival;
7: } u;
295

PARM_WILD

296
8:
9: void foo(a)
10: int a[];
11: {
12: return;
13: }
14:
15: main()
16: {
17: int i = 123;
18:
19: u.ptr = (int *)&i;
20: u.ival = i;
21: foo(u.ptr);
22: return (0);
23: }

Note that this code will not generate compile time errors.

Diagnosis (at runtime)
 [parmwld2.c:11] **PARM_WILD**
1 >> {

2 Array parameter is wild: a

3 Pointer : 0x0000007b

Stack trace where the error occurred:
4 foo() parmwld2.c, 11

main() parmwld2.c, 21

1. Source line at which the problem was detected.

2. Description of the problem and the name of the parameter that is
in error.

3. Value of the bad pointer.

4. Stack trace showing the function call sequence leading to the
error.

PARM_WILD
Repair
This problem is most conveniently tracked in a debugger by stopping the
program at the indicated source line. You should then examine the illegal
value and attempt to see where it was generated. Alternatively you can
stop the program at some point prior to the error and single-step through
the code leading up to the problem.

Note that wild pointers can also be generated when Insure++ has only
partial information about your program’s structure. For more information
about this topic, contact ParaSoft’s Quality Consultants.
297

READ_BAD_INDEX

298
READ_BAD_INDEX
Reading Array Out-of-Range
This error is generated whenever an illegal value will be used to index an
array. It is a particularly common error that can be very difficult to detect,
especially if the out-of-range elements happen to have zero values.

If this error can be detected during compilation, an error will be issued
instead of the normal runtime error.

Problem
This code attempts to access an illegal array element due to an incorrect
loop range.
1: /*
2: * File: readindx.c
3: */
4: int a[10];
5: int junk;
6: main()
7: {
8: int i, tot=0;
9:
10: for(i=1; i<=10; i++)
11: tot += a[i];
12: return (0);
13: }

Diagnosis (at runtime)
 [readindx.c:11] **READ_BAD_INDEX**
1 >> tot += a[i];

2 Reading array out of range: a[i]

3 Index used: 10

4 Valid range: 0 thru 9 (inclusive)

READ_BAD_INDEX
Stack trace where the error occurred:
5 main() readindx.c, 11

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Illegal index value used.

4. Valid index range for this array.

5. Stack trace showing the function call sequence leading to the
error.

Repair
Typical sources of this error include loops with incorrect initial or terminal
conditions, as in this example, for which the corrected code is:

main()
{
 int i, tot=0, a[10];

 for(i=0; i<sizeof(a)/sizeof(a[0]); i++)
 tot += a[i];
 return (0);
}

299

READ_DANGLING

300
READ_DANGLING
Reading From a Dangling Pointer
This problem occurs when an attempt is made to dereference a pointer
that points to a block of memory that has been freed.

Problem
This code attempts to use a piece of dynamically allocated memory after
it has already been freed.

1: /*
2: * File: readdngl.c
3: */
4: #include <stdlib.h>
5:
6: main()
7: {
8: char b;
9: char *a = (char *)malloc(10);
10:
11: free(a);
12: b = *a;
13: return (0);
14: }

Diagnosis (at runtime)
 [readdngl.c:12] **READ_DANGLING**
1 >> b = *a;

2 Reading from a dangling pointer: a

3 Pointer: 0x000173e8
4 In block:0x000173e8 thru 0x000173f1 (10 bytes)

block allocated at:
malloc() (interface)
 main() readdngl.c, 9

READ_DANGLING
5 stack trace where memory was freed:
 main() readdngl.c, 11

Stack trace where the error occurred:
6 main() readdngl.c, 12

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Value of the dangling pointer variable.

4. Description of the block to which this pointer used to point, includ-
ing its size, name and the line at which it was allocated.

5. Stack trace showing where this block was freed.

6. Stack trace showing the function call sequence leading to the
error.

Repair
Check that the de-allocation that occurs at the indicated location should,
indeed, have taken place. Also check that the pointer you are using
should really be pointing to a block allocated at the indicated place.
301

READ_NULL

302
READ_NULL
Reading NULL pointer
This error is generated whenever an attempt is made to dereference a
NULL pointer.

Problem
This code attempts to use a pointer which has not been explicitly
initialized. Since the variable a is global, it is initialized to zero by default,
which results in dereferencing a NULL pointer in line 10.
1: /*
2: * File: readnull.c
3: */
4: int *a;
5:
6: main()
7: {
8: int b, c;
9:
10: b = *a;
11: }

Diagnosis (at runtime)
 [readnull.c:10] **READ_NULL**
1 >> b = *a;

2 Reading null pointer: a
Stack trace where the error occurred:

3 main() readnull.c, 10

4 **Memory corrupted. Program may crash!!**

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

READ_NULL
3. Stack trace showing the function call sequence leading to the
error.

4. Informational message indicating that a serious error has
occurred which may cause the program to crash.

Repair
A common cause of this problem is the one shown in the example - use of
a pointer that has not been assigned and which is initialized to zero. This
is usually due to the omission of an assignment or allocation statement
which would give the pointer a reasonable value.

The example code might, for example, be corrected as follows:
1: /*
2: * File: readnull.c (modified)
3: */
4: int *a;
5:
6: main()
7: {
8: int b, c;
9:
10: a = &c;
11: b = *a;
12: }

A second common source of this error is code which dynamically
allocates memory, but then zeroes pointers as blocks are freed. In this
case, the error would indicate reuse of a freed block.

A final common problem is caused when one of the dynamic memory
allocation routines, malloc, calloc, or realloc, fails and returns a NULL
pointer. This can happen either because your program passes bad
arguments or simply because it asks for too much memory. A simple way
of finding this problem with Insure++ is to enable the RETURN_FAILURE
error code (see “RETURN_FAILURE” on page 322) through the
Suppressions Control Panel and run the program again. It will then issue
diagnostic messages every time a system call fails, including the memory
allocation routines.
303

READ_OVERFLOW

304
READ_OVERFLOW
Reading Overflows Memory
This error is generated whenever a read operation would access a piece
of memory beyond the valid range for a block.

Problem #1
This code attempts to copy a string into the array b. Note that although
the array is large enough, the memcpy operation will fail, since it attempts
to read past the end of the string a.

1: /*
2: * File: readovr1.c
3: */
4: main()
5: {
6: char *a = "TEST";
7: char b[20];
8:
9: memcpy(b, a, sizeof(b));
10: return (0);
11: }

Diagnosis (at runtime)
[readovr1.c:9] **READ_OVERFLOW**

1>> memcpy(b, a, sizeof(b));

2 Reading overflows memory: <argument 2>

bbbbb
3 | 5 | 15 |

rrrrrrrrrrrrrrrr

Reading (r): 0x00012218 thru 0x0001222b (20 bytes)

READ_OVERFLOW
4 From block(b): 0x00012218 thru 0x0001221c (5 bytes)
a, declared at readovr1.c, 6

5 Stack trace where the error occurred:
memcpy() (interface)
main() readovr1.c, 9

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Schematic showing the relative layout of the actual memory block
(b) and region being read (r) (see “Overflow Diagrams” on
page 191).

4. Range of memory being read and description of the block from
which the read is taking place, including its size and the location
of its declaration.

5. Stack trace showing the function call sequence leading to the
error.

Problem #2
A second fairly common case arises when strings are not terminated
properly. The code shown below copies a string using the strncpy
routine, which leaves it non-terminated since the buffer is too short. When
we attempt to print this message, an error results.
1: /*
2: * File: readovr2.c
3: */
4: main()
5: {
6: char junk;
7: char b[8];
8: strncpy(b, "This is a test",
9: sizeof(b));
10: printf("%s\n", b);
11: return (0);
12: }
305

READ_OVERFLOW

306
Diagnosis (at runtime)
 [readovr2.c:10] **READ_OVERFLOW**
1 >> printf("%s\n", b);

2 String is not null terminated within range: b

3 Reading : 0xf7fffb50
4 From block: 0xf7fffb50 thru 0xf7fffb57 (8 bytes)

b, declared at readovr2.c, 7

Stack trace where the error occurred:
5 main() readovr2.c, 10

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Pointer being used as a string.

4. Block from which the read is taking place, including its size and
the location of its declaration.

5. Stack trace showing the function call sequence leading to the
error.

A slight variation on this misuse of strings occurs when the pointer,
passed as a string, lies completely outside the range of its buffer. In this
case, the diagnostics will appear as above except that the description line
will contain the message

Alleged string does not begin within legal range

Problem #3
This code attempts to read past the end of the allocated memory block by
reading the second element of the union.
1: /*
2: * File: readovr3.c
3: */
4: #include <stdlib.h>
5:
6: struct small {
7: int x;

READ_OVERFLOW
8: };
9:
10: struct big {
11: double y;
12: };
13:
14: union two
15: {
16: struct small a;
17: struct big b;
18: };
19:
20: int main()
21: {
22: struct small *var1;
23: union two *ptr;
24: double d;
25:
26: var1 = (struct small *)malloc (sizeof(struct
small));
27: ptr = (union two *) var1;
28: d = ptr->b.y;
29: return (0);
30: }

Diagnosis (at runtime)
 [readovr3.c:28] **READ_OVERFLOW**
1 >> d = ptr->b.y;

2 Structure reference out of range: ptr

bbbbb
3 | 4 | 4 |

rrrrrrrrr

 Reading (r): 0x0001fce0 thru 0x0001fce7 (8 bytes)
4 From block(b): 0x0001fce0 thru 0x0001fce3 (4 bytes)

block allocated at:
malloc() (interface)
main() readovr3.c, 26
307

READ_OVERFLOW

308
Stack trace where the error occurred:
5 main() readovr3.c, 28

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Schematic showing the relative layout of the actual memory block
(b) and region being read (r). (See “Overflow Diagrams” on
page 191.)

4. Range of memory being read and description of the block from
which the read is taking place, including its size and the location
of its declaration.

5. Stack trace showing the function call sequence leading to the
error.

Problem #4
This code shows a C++ problem that can occur when using inheritance
and casting pointers incorrectly.
1: /*
2: * File: readover.cpp
3: */
4: #include <stdlib.h>
5:
6: class small
7: {
8: public:
9: int x;
10: };
11:
12: class big : public small
13: {
14: public:
15: double y;
16: };
17:
18: int main()
19: {

READ_OVERFLOW
20: small *var1;
21: big *var2;
22: double d;
23:
24: var1 = new small;
25: var2 = (big *) var1;
26: d = var2->y;
27: return (0);
28: }

Diagnosis (at runtime)
 [readover.cpp:26] **READ_OVERFLOW**
1 >> d = var2->y;

2 Structure reference out of range: var2

bbbbb
3 | 4 | 4 | 8 |

rrrrrrr

Reading (r): 0x0001fce0 thru 0x0001fce7 (8 bytes)
4 From block(b): 0x0001fce0 thru 0x0001fce3 (4 bytes)

var1, allocated at:
operator new()

main() readover.cpp, 24
Stack trace where the error occurred:

5 main() readover.cpp, 26

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Schematic showing the relative layout of the actual memory block
(b) and region being read (r). (See “Overflow Diagrams” on
page 191.)

4. Range of memory being read and description of the block from
which the read is taking place, including its size and the location
of its declaration.
309

READ_OVERFLOW

310
5. Stack trace showing the function call sequence leading to the
error.

Repair
These errors often occur when reading past the end of a string or using
the sizeof operator incorrectly. In most cases, the indicated source line
contains a simple error.

The code for problem #1 could, for example, be corrected by changing
line 9 to

memcpy(b, a, strlen(a)+1);

READ_UNINIT_MEM
READ_UNINIT_MEM
Reading Uninitialized Memory
The use of uninitialized memory is a difficult problem to isolate, since the
effects of the problem may not show up until much later. This problem is
complicated by the fact that quite a lot of references to uninitialized
memory are harmless.

To deal with these issues, Insure++ distinguishes two sub-categories of
the READ_UNINIT_MEM error class

• copy - This error code is generated whenever an application
assigns a variable using an uninitialized value. In itself, this may
not be a problem, since the value may be reassigned to a valid
value before use or may never be used. This error category is
suppressed by default.

• read - This code is generated whenever an uninitialized value is
used in an expression or some other context where it must be
incorrect. This error category is enabled by default, but is
detected only if the checking_uninit option is on.
(see “Advanced Configuration Options Used by Insure++” on
page 167)

The difference between these two categories is illustrated in the following
examples.

Note: Full checking may be disabled by setting the option
checking_uninit off (see “Advanced Configuration Options Used by
Insure++” on page 167). If full uninitialized memory checking is disabled,
uninitialized pointers will still be detected, but will be reported in the
READ_UNINIT_PTR category (see “READ_UNINIT_PTR” on page 315).

Problem #1
This code attempts to use a structure element which has never been
initialized.
1: /*
2: * File: readuni1.c
3: */
311

READ_UNINIT_MEM

312
4: #include <stdio.h>
5:
6: main()
7: {
8: struct rectangle {
9: int width;
10: int height;
11: };
12:
13: struct rectangle box;
14: int area;
15:
16: box.width = 5;
17: area = box.width*box.height;
18: printf("area = %d\n", area);
19: return (0);
20: }

Diagnosis (at runtime)
 [readuni1.c:17] **READ_UNINIT_MEM(read)**
1 >> area = box.width * box.height;

2 Reading uninitialized memory: box.height
Stack trace where the error occurred:

3 main() readuni1.c, 17

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Stack trace showing the function call sequence leading to the
error.

Problem #2
This code assigns the value b using memory returned by the malloc
system call, which is uninitialized.
1: /*
2: * File: readuni2.c
3: */
4: #include <stdlib.h>

READ_UNINIT_MEM
5:
6: main()
7: {
8: int *a = (int *)malloc(5);
9: int b;
10:
11: b = *a;
12: return (0);
13: }

The code in line 11 of this example falls into the copy error sub-category,
since the uninitialized value is merely used to assign another variable. If b
were later used in an expression, it would then generate a
READ_UNINIT_MEM(read) error.

Note: If the ints in lines 8 and 9 of the above example were replaced by
chars, the error would not be detected by default. To see the error in the
new example, you would need to set the option
checking_uninit_min_size 1. For more information about this option,
see “Advanced Configuration Options Used by Insure++” on page 167.

Diagnosis (at runtime)
 [readuni2.c:11] **READ_UNINIT_MEM(copy)**
1 >> b = *a;

Reading uninitialized memory: *a

In block: 0x00062058 thru 0x0006205c (5 bytes)
block allocated at:

malloc() (interface)
main() readuni2.c, 8

Stack trace where the error occurred:
3 main() readuni2.c, 11

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Stack trace showing the function call sequence leading to the
error.
313

READ_UNINIT_MEM

314
Repair
As mentioned earlier, the READ_UNINIT_MEM(copy) error category is
suppressed by default, so you will normally only see errors in the read
category. In many cases, these will be errors that can be simply corrected
by initializing the appropriate variables. In other cases, these values will
have been assigned from other uninitialized variables, which can be
detected by unsuppressing the copy sub-category and running again.

READ_UNINIT_PTR
READ_UNINIT_PTR
Reading From Uninitialized Pointer
This error is generated whenever an uninitialized pointer is dereferenced.

Note: This error category will be disabled if full uninitialized memory
checking is in effect (the default). In this case, errors are detected in the
READ_UNINIT_MEM category instead. (see “READ_UNINIT_MEM” on
page 311)

Problem
This code attempts to use the value of the pointer a, even though it has
never been initialized.
1: /*
2: * File: readuptr.c
3: */
4: main()
5: {
6: int b, *a;
7:
8: b = *a;
9: return (0);
10: }

Diagnosis (at runtime)
 [readuptr.c:8] **READ_UNINIT_PTR**
1 >> b = *a;

2 Reading from uninitialized pointer: a

Stack trace where the error occurred:
3 main() readuptr.c, 8
315

READ_UNINIT_PTR

316
1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Stack trace showing the function call sequence leading to the
error.

Repair
This problem is usually caused by omitting an assignment or allocation
statement that would initialize a pointer. The code given can be corrected
by including an assignment as shown below.

/*
 * File: readuptr.c (Modified)
 */
main()
{
 int b, *a, c;

 a = &c;
 b = *a;
 return (0);
}

READ_WILD
READ_WILD
Reading Wild Pointer
This problem occurs when an attempt is made to dereference a pointer
whose value is invalid or which Insure++ did not see allocated.

This can come about in several ways:

• Errors in user code that result in pointers that don’t point at any
known memory block.

• Compiling only some of the files that make up an application. This
can result in Insure++ not knowing enough about memory usage
to distinguish correct and erroneous behavior.

Note: This section focuses on the first type of problem described here.
For information on the second type of problem, contact ParaSoft’s Quality
Consultants.

Problem #1
The following code attempts to use the address of a variable but contains
an error at line 8 - the address operator (&) has been omitted.
1: /*
2: * File: readwld1.c
3: */
4: main()
5: {
6: int *a, i = 123, b;
7:
8: a = i;
9: b = *a;
10: return (0);
11: }

Diagnosis (at runtime)
[readwld1.c:9] **READ_WILD**
1>> b = *a;
317

READ_WILD

318
2 Reading wild pointer: a

3 Pointer : 0x0000007b

Stack trace where the error occurred:
4 main() readwld1.c, 9

1. Source line at which the problem was detected.

2. Description of the problem and the name of the parameter that is
in error.

3. Value of the bad pointer.

4. Stack trace showing the function call sequence leading to the
error.

Note that most compilers will generate warning messages for this error
since the assignment uses incompatible types.

Problem #2
A more insidious version of the same problem can occur when using
union types. The following code first assigns the pointer element of a
union but then overwrites it with another element before using it.
1: /*
2: * File: readwld2.c
3: */
4: union {
5: int *ptr;
6: int ival;
7: } u;
8:
9: main()
10: {
11: int b, i = 123;
12:
13: u.ptr = &i;
14: u.ival = i;
15: b = *u.ptr;
16: return (0);
17: }

READ_WILD
Note that this code will not generate compile time errors.

Diagnosis (at runtime)
 [readwld2.c:15] **READ_WILD**
1 >> b = *u.ptr;

2 Reading wild pointer: u.ptr

3 Pointer : 0x0000007b

Stace trace where error occurred:
4 main() readwld2.c, 15

1. Source line at which the problem was detected.

2. Description of the problem and the name of the parameter that is
in error.

3. Value of the bad pointer.

4. Stack trace showing the function call sequence leading to the
error.

Repair
The simpler types of problem are most conveniently tracked in a
debugger by stopping the program at the indicated source line. You
should then examine the illegal value and attempt to see where it was
generated. Alternatively you can stop the program at some point shortly
before the error and single-step through the code leading up to the
problem.

Note that wild pointers can also be generated when Insure++ has only
partial information about your program’s structure. For more information
on this topic, contact ParaSoft’s Quality Consultants.
319

RETURN_DANGLING

320
RETURN_DANGLING
Returning Pointer To Local Variable
This error is generated whenever a function returns a pointer to a (non-
static) local variable. Since the stack frame of this routine will disappear
when the function returns, this pointer is never valid.

Problem
The following code shows the routine foo returning a pointer to a local
variable.
1: /*
2: * File: retdngl.c
3: */
4: char *foo()
5: {
6: char b[10];
7: return b;
8: }
9:
10: main()
11: {
12: char *a = foo();
13: return 0;
14: }

Diagnosis (during compilation)
1 [retdngl.c:7] **RETURN_DANGLING**
2 Returning pointer to local variable: b.
>> return b;

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

RETURN_DANGLING
Repair
The pointer returned in this manner can be made legal in one of several
ways.

• Passing the required buffer from the calling function, and if
required also passing the size of the buffer as yet another param-
eter

• Declaring the memory block static in the called routine, i.e.,
line 6 would become

static char b[10];

• Allocating a block dynamically instead of on the stack and return-
ing a pointer to it, e.g.,

char *foo()
{
 return malloc(10);
}

• Making the memory block into a global variable rather than a
local one.

Occasionally, the value returned from the function is never used in which
case it is safest to change the declaration of the routine to indicate that no
value is returned.
321

RETURN_FAILURE

322
RETURN_FAILURE
Function Call Returned An Error
A particularly difficult problem to track with conventional methods is that of
incorrect return code from system functions. Insure++ is equipped with
interface definitions for system libraries that enable it to check for errors
when functions are called. Normally, these messages are suppressed,
since applications often include their own handling for system calls that
return errors. In some cases, however, it may be useful to enable these
messages to track down totally unexpected behavior.

Problem
A particularly common problem occurs when applications run out of
memory as in the following code.
1: /*
2: * File: retfail.c
3: */
4: #include <stdlib.h>
5:
6: main()
7: {
8: char *p;
9:
10: p = malloc(1024*1024*1024);
11: return (0);
12: }

RETURN_FAILURE
Diagnosis
Normally, this code will run without displaying any messages. If
RETURN_FAILURE messages are enabled, however, the following display
will result.
 [retfail.c:10] **RETURN_FAILURE**
1 >> p = malloc(1024*1024*1024);

Function returned an error:
2 malloc(1073741824) failed: no more memory

Stack trace where the error occurred:
3 malloc() (interface)

main() retfail.c, 10

1. Source line at which the problem was detected.

2. Description of the error and the parameters used.

3. Stack trace showing the function call sequence leading to the
error.

Repair
These messages are normally suppressed, but can be enabled by
unsuppressing

RETURN_FAILURE

in the Suppressions Control Panel.
323

RETURN_INCONSISTENT

324
RETURN_INCONSISTENT
Function Has Inconsistent Return Type
Insure++ checks that each function returns a result consistent with its
declared data type, and that a function with a declared return type actually
returns an appropriate value.

Because there are several different ways in which functions and return
values can be declared, Insure++ divides up this error category into four
levels or subcategories as follows:

• Level 1 - Function has no explicitly declared return type (and so
defaults to int) and returns no value. (This error level is normally
suppressed.)

• Level 2 - Function is explicitly declared to return type int but
returns nothing.

• Level 3 - Function explicitly declared to return a data type other
than int but returns no value.

• Level 4 - The function returns the value for one data type at one
statement and another data type at another statement.

In many applications, errors at levels 1 and 2 need to be suppressed,
since older codes often include these constructs.

Problem
The following code demonstrates the four different error levels.
1: /*
2: * File: retinc.c
3: */
4: func1() {
5: return;
6: }
7:
8: int func2() {
9: return;
10: }
11:

RETURN_INCONSISTENT
12: double func3() {
13: return;
14: }
15:
16: int func4(a)
17: int a;
18: {
19: if (a < 3) return a;
20: return;
21: }

Diagnosis (During compilation)
1 [retinc.c:4] **RETURN_INCONSISTENT(1)**
2 Function func1 has an inconsistent return type.

Declared return type implicitly "int",
but returns no value.

>> func1() {
[retinc.c:8] **RETURN_INCONSISTENT(2)**

Function func2 has an inconsistent return type.
Declared return type "int", but returns no value.

>> int func2() {
[retinc.c:12] **RETURN_INCONSISTENT(3)**

Function func2 has an inconsistent return type.
Declared return type "double", but returns no

value.
>> double func3() {
[retinc.c:20] **RETURN_INCONSISTENT(4)**

Function func4 has an inconsistent return type.
Returns value in one location, and not in another.

>> return;

1. Source line at which the problem was detected.

2. Description of the error and the parameters used.
325

RETURN_INCONSISTENT

326
Repair
As already suggested, older codes often generate errors at levels 1 and 2
which are not particularly serious. You can either correct these problems
by adding suitable declarations or suppress them by suppressing

RETURN_INCONSISTENT(1, 2)

in the Suppressions Control Panel.

Errors at levels 3 and 4 should probably be investigated and corrected.

UNUSED_VAR
UNUSED_VAR
Unused Variables
Insure++ has the ability to detect unused variables in your code. Since
these are not normally errors, but informative messages, this category is
disabled by default.

Two different sub-categories are distinguished.

• assigned - The variable is assigned a value but never used.

• unused - The variable is never used.

Problem #1
The following code assigns a value to the variable max but never uses it.
1: /*
2: * File: unuasign.c
3: */
4: main()
5: {
6: int i, a[10];
7: int max;
8:
9: a[0] = 1;
10: a[1] = 1;
11: for(i=2; i<10; i++)
12: a[i] = a[i-1]+a[i-2];
13: max = a[9];
14: }

Diagnosis (during compilation)
Normally this code will run without displaying any messages. If
UNUSED_VAR messages are enabled, however, the following display will
result.
1 [unuasign.c:7] **UNUSED_VAR(assigned)**
2 Variable assigned but never used: max
>> int max;
327

UNUSED_VAR

328
1. Source line at which the problem was detected.

2. Description of the error and the parameters used.

Problem #2
The following code never uses the variable max.
1: /*
2: * File: unuvar.c
3: */
4: main()
5: {
6: int i, a[10];
7: int max;
8:
9: a[0] = 1;
10: a[1] = 1;
11: for(i=2; i<10; i++)
12: a[i] = a[i-1]+a[i-2];
13: }

Diagnosis (during compilation)
If UNUSED_VAR messages are enabled, however, the following display will
result.
1 [unuvar.c:7] **UNUSED_VAR(unused)**
2 Variable declared but never used: max
>> int max;

1. Source line at which the problem was detected.

2. Description of the error and the parameters used.

UNUSED_VAR
Repair
These messages are normally suppressed but can be enabled by
unsuppressing

UNUSED_VAR

in the Suppressions Control Panel.

You can also enable each sub-category independently by unsuppressing
UNUSED_VAR(assigned)

In most cases, the corrective action to be taken is to remove the offending
statement, since it is not affecting the behavior of the application. In
certain circumstances, these errors might denote logical program errors in
which a variable should have been used but wasn’t.
329

USER_ERROR

330
USER_ERROR
User Generated Error Message
This error is generated when a program violates a rule specified in an
interface module. These normally check that parameters passed to
system level or user functions fall within legal ranges or are otherwise
valid. This behavior is different from the RETURN_FAILURE error code,
which normally indicates that the call to the function was made with valid
data, but that it still returned an error for some, possibly anticipated,
reason.

Problem
These problems fall into many different categories. A particularly simple
example is shown in the following code, which calls the sqrt function and
passes it a negative argument.
1: /*
2: * File: usererr.c
3: */
4: #include <math.h>
5:
6: main()
7: {
8: double q;
9:
10: q = sqrt(-2.0);
11: return (0);
12: }

USER_ERROR
Diagnosis (at runtime)
 [usererr.c:10] **USER_ERROR**
1 >> q = sqrt(-2.0);

2 Negative number -2.000000 passed to sqrt:

Stack trace where the error occurred:
3 main() usererr.c, 10

1. Source line at which the problem was detected.

2. Description of the error and the parameters used.

3. Stack trace showing the function call sequence leading to the
error.

Repair
Each message in this category is caused by a different problem, which
should be evident from the printed diagnostic. Usually, these checks
revolve around the legality of various arguments to functions.

These messages can be suppressed by suppressing
USER_ERROR

in the Suppressions Control Panel
331

VIRTUAL_BAD

332
VIRTUAL_BAD
Error In Runtime Initialization Of Virtual
Functions
This error is caused when a virtual function has not been initialized prior
to being used by another function.

Problem
The following pieces of code illustrate this error. The virtual function func
is declared in virtbad1.cpp in the goo class. A static variable of this
class, barney, is also declared in that file. The function crash calls func
through barney in line 23. In file virtbad2.cpp, a static variable of class
foo, fred, is declared. Class foo calls crash, which then in turn ends up
calling the virtual function func. A virtual function’s address is not
established until the program is initialized at runtime, and static functions
are also initialized at runtime. This means that depending on the order of
initialization, fred could be trying to find func, which does not yet have an
address. The VIRTUAL_BAD error message is generated when this code is
compiled with Insure++.

Note: Due to differences in the object layout of different compilers, this
error might not be detected with certain compilers.
1: /*
2: * File: virtbad1.cpp
3: */
4: #include <iostream>
5:
6: class goo {
7: public:
8: int i;
9: goo::goo() {
10: cerr << “goo is initialized.”

<< endl; }
11: virtual int func();
12: virtual int func2();
13: };
14: static goo barney;

VIRTUAL_BAD
15: int crash() {
16: int ret;
17: cerr << “Sizeof(goo) = ” <<

sizeof(goo) << endl;
18: cerr << “Sizeof(i) = “ <<

sizeof(int) << endl;
19: char *cptr = (char *) &barney;
20: cptr += 4;
21: long *lptr = (long *) cptr;
22: cerr << “vp = “ << *lptr << endl;
23: ret = barney.func();
24: cerr << “crash” << endl;
25: return ret;
26: }
27: int goo::func() {
28: cerr << “goo.func” << endl;
29: func2();
30: return i;
31: }
32: int goo::func2() {
33: cerr << “goo.func2” << endl;
34: return 2;
35: }

Figure 1. virtbad1.C

1: /*
2: * File: virtbad2.cpp
3: */
4: #include <iostream>
5:
6: extern int crash();
7:
8: class foo {
9: public:
10: foo::foo() {
11: cerr << “foo” << endl;
12: cerr << “Got “ <<

crash() << endl;
13: }
14: };
15:
333

VIRTUAL_BAD

334
16: static foo fred;

Figure 2. virtbad2.C

1: /*
2: * File: virtbad3.cpp
3: */
4: #include <iostream>
5:
6: int main() {
7: cerr << “main” << endl;
8: return 0;
9: }

Figure 3. virtbad3.C

Diagnosis (at runtime)
[virtbad1.cpp:29] **VIRTUAL_BAD**
1 >> func2();

2 Virtual function table is invalid: func2()

3 Stack trace where the error occurred:
goo::func()virtbad1.cpp, 29
crash() virtbad1.cpp, 23
foo::foo()virtbad2.cpp, 12

__mod_I__fred0virtbad21001_cc_000()
_main()
main() virtbad3.cpp, 6

 Memory corrupted. Program may crash!!
4 Abort (core dumped)

VIRTUAL_BAD
1. Source line at which the problem was detected.

2. Description of the problem and which virtual function caused the
error.

3. Stack trace showing the function call sequence leading to the
error.

4. Core dumps typically follow these messages, as any usage of the
dynamic memory functions will be unable to cope.

Repair
The error in the sample code could be eliminated by not making fred
static. In that case, the address for func would be generated during the
initialization before any requests for it existed, and then no problems
would occur.
335

WRITE_BAD_INDEX

336
WRITE_BAD_INDEX
Writing Array Out-of-Range
This error is generated whenever an illegal value will be used to index an
array which is being written.

If this error can be detected during compilation, a compilation error will be
issued instead of the normal runtime error.

Problem
This code attempts to access an illegal array element due to an incorrect
loop range.
1: /*
2: * File: writindx.c
3: */
4: main()
5: {
6: int i, a[10];
7:
8: for(i=1; i<=10; i++)
9: a[i] = 0;
10: return (0);
11: }

Diagnosis (at runtime)
 [writindx.c:9] **WRITE_BAD_INDEX**
1 >> a[i] = 0;

2 Writing array out of range: a[i]

3 Index used: 10

4 Valid range: 0 thru 9 (inclusive)
Stack trace where the error occurred:

5 main() writindx.c, 9

6 **Memory corrupted. Program may crash!!**

WRITE_BAD_INDEX
1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Illegal index value used.

4. Valid index range for this array.

5. Stack trace showing the function call sequence leading to the
error.

6. Informational message indicating that a serious error has
occurred which may cause the program to crash.

Repair
This is normally a fatal error and is often introduced algorithmically.

Other typical sources include loops with incorrect initial or terminal
conditions, as in this example, for which the corrected code is:

main()
{
 int i, a[10];

 for(i=; i<sizeof(a)/sizeof(a[0]); i++)
 a[i] = 0;
 return (0);
}

337

WRITE_DANGLING

338
WRITE_DANGLING
Writing To a Dangling Pointer
This problem occurs when an attempt is made to dereference a pointer
that points to a block of memory that has been freed.

Problem
This code attempts to use a piece of dynamically allocated memory after
it has already been freed.
1: /*
2: * File: writdngl.c
3: */
4: #include <stdlib.h>
5:
6: main()
7: {
8: char *a = (char *)malloc(10);
9:
10: free(a);
11: *a = 'x';
12: return (0);
13: }

Diagnosis (at runtime)
 [writdngl.c:11] **WRITE_DANGLING**
1 >> *a = 'x';

2 Writing to a dangling pointer: a

3 Pointer: 0x000173e8
4 In block:0x000173e8 thru 0x000173f1 (10 bytes)

block allocated at:
malloc() (interface)
 main() writdngl.c, 8

5 stack trace where memory was freed:
 main() writdngl.c, 10

WRITE_DANGLING
6 Stack trace where the error occurred:
main() writdngl.c, 11

Memory corrupted. Program may crash!!

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Value of the dangling pointer variable

4. Description of the block to which this pointer used to point, includ-
ing its size, name, and the line at which it was allocated.

5. Indication of the line at which this block was freed.

6. Stack trace showing the function call sequence leading to the
error.

Repair
Check that the de-allocation that occurs at the indicated location should
indeed have taken place. Also check that the pointer you are using should
really be pointing to a block allocated at the indicated place.
339

WRITE_NULL

340
WRITE_NULL
Writing To a NULL Pointer
This error is generated whenever an attempt is made to dereference a
NULL pointer.

Problem
This code attempts to use a pointer which has not been explicitly
assigned. Since the variable a is global, it is initialized to zero by default,
which results in dereferencing a NULL pointer in line 8.
1: /*
2: * File: writnull.c
3: */
4: int *a;
5:
6: main()
7: {
8: *a = 123;
9: return (0);
10: }

Diagnosis (at runtime)
 [writnull.c:8] **WRITE_NULL**
1 >> *a = 123;

2 Writing to a null pointer: a
Stack trace where the error occurred:

3 main() writnull.c, 8

4 **Memory corrupted. Program may crash!!**

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

WRITE_NULL
3. Stack trace showing the function call sequence leading to the
error.

4. Informational message indicating that a serious error has
occurred which may cause the program to crash.

Repair
A common cause of this problem is the one shown in the example-- use of
a pointer that has not been explicitly assigned and which is initialized to
zero. This is usually due to the omission of an assignment or allocation
statement which would give the pointer a reasonable value.

The example code might, for example, be corrected as follows
1: /*
2: * File: writnull.c (Modified)
3: */
4: int *a;
5:
6: main()
7: {
8: int b;
9:
10: a = &b;
11: *a = 123;
12: return (0);
13: }

A second common source of this error is code which dynamically
allocates memory but then zeroes pointers as blocks are freed. In this
case, the error would indicate reuse of a freed block.

A final common problem is caused when one of the dynamic memory
allocation routines, malloc, calloc, or realloc, fails and returns a NULL
pointer. This can happen either because your program passes bad
arguments or simply because it asks for too much memory. A simple way
of finding this problem with Insure++ is to enable the RETURN_FAILURE
error code (see “RETURN_FAILURE” on page 322) via your
Suppressions Control Panel and run the program again. It will then issue
diagnostic messages every time a system call fails, including the memory
allocation routines.
341

WRITE_OVERFLOW

342
WRITE_OVERFLOW
Writing Overflows Memory
This error is generated whenever a block of memory indicated by a
pointer will be written outside its valid range.

Problem
This code attempts to copy a string into the array a, which is not large
enough.
1: /*
2: * File: writover.c
3: */
4: main()
5: {
6: int junk;
7: char a[10];
8:
9: strcpy(a, "A simple test");
10: return (0);
11: }

Diagnosis (at runtime)
 [writover.c:9] **WRITE_OVERFLOW**
1 >> strcpy(a, "A simple test");

2 Writing overflows memory: a

bbbbbbbbbb
3 | 10 | 4 |

wwwwwwwwwwwwwwww

4 Writing (w): 0xf7fffafc thru 0xf7fffb09 (14 bytes)
To block (b): 0xf7fffafc thru 0xf7fffb05 (10

bytes)

a, declared at writover.c, 7

WRITE_OVERFLOW
5 Stack trace where the error occurred:
strcpy () (interface)
main() writover.c, 9

1. Source line at which the problem was detected.

2. Description of the problem and the incorrect expression.

3. Schematic showing the relative layout of the actual memory block
(b) and region being written (w). (See “Overflow Diagrams” on
page 191.)

4. Range of memory being written and description of the block to
which the write is taking place, including its size and the location
of its declaration.

5. Stack trace showing the call sequence leading to the error.

Repair
This error often occurs when working with strings. In most cases, a simple
fix is to increase the size of the destination object.
343

WRITE_UNINIT_PTR

344
WRITE_UNINIT_PTR
Writing To An Uninitialized Pointer
This error is generated whenever an uninitialized pointer is dereferenced.

Problem
This code attempts to use the value of the pointer a, even though it has
not been initialized.
1: /*
2: * File: writuptr.c
3: */
4: main()
5: {
6: int *a;
7:
8: *a = 123;
9: return (0);
10: }

Diagnosis (at runtime)
 [writuptr.c:8] **WRITE_UNINIT_PTR**
1 >> *a = 123;

2 Writing to an uninitialized pointer: a

Stack trace where the error occurred:
3 main() writuptr.c, 8

4 **Memory corrupted. Program may crash!!**

1. Source line at which the problem was detected.

2. Description of the problem and the expression that is in error.

3. Stack trace showing the function call sequence leading to the
error.

WRITE_UNINIT_PTR
4. Informational message indicating that a serious error has
occurred which may cause the program to crash.

Repair
This problem is usually caused by omitting an assignment or allocation
statement that would initialize a pointer. The code given, for example,
could be corrected by including an assignment as shown below.

/*
 * File: writuptr.c (Modified)
 */
main()
{
 int *a, b;

 a = &b;
 *a = 123;

}

345

WRITE_WILD

346
WRITE_WILD
Writing To a Wild Pointer
This problem occurs when an attempt is made to dereference a pointer
whose value is invalid or which Insure++ did not see allocated.

This can come about in several ways:

• Errors in user code that result in pointers that don’t point at any
known memory block.

• Compiling only some of the files that make up an application. This
can result in Insure++ not knowing enough about memory usage
to distinguish correct and erroneous behavior.

Note: This section focuses on the first type of problem described here.
For information about the second type of problem, contact ParaSoft’s
Quality Consultants.

Problem #1
The following code attempts to use the address of a variable but contains
an error at line 8 - the address operator (&) has been omitted.
1: /*
2: * File: writwld1.c
3: */
4: main()
5: {
6: int i = 123, *a;
7:
8: a = i;
9: *a = 99;
10: return (0);
11: }

Diagnosis (at runtime)
 [writwld1.c:9] **WRITE_WILD**
1 >> *a = 99;

WRITE_WILD
2 Writing to a wild pointer: a

3 Pointer : 0x0000007b

4 Stack trace where the error occurred:
main() writwld1.c, 9

1. Source line at which the problem was detected.

2. Description of the problem and the name of the parameter that is
in error.

3. Value of the bad pointer.

4. Stack trace showing the function call sequence leading to the
error.

Note that most compilers will generate warning messages for this error
since the assignment in line 8 uses incompatible types.

Problem #2
A more insidious version of the same problem can occur when using
union types. The following code first assigns the pointer element of a
union but then overwrites it with another element before using it.
1: /*
2: * File: writwld2.c
3: */
4: union {
5: int *ptr;
6: int ival;
7: } u;
8:
9: main()
10: {
11: int i = 123;
12:
13: u.ptr = &i;
14: u.ival = i;
15: *u.ptr = 99;
16: return (0);
17: }
347

WRITE_WILD

348
Note that this code will not generate compile time errors.

Diagnosis (at runtime)
[writwld2.c:15] **WRITE_WILD**
1>> *u.ptr = 99;

2 Writing to a wild pointer: u.ptr

3 Pointer : 0x0000007b

4 Stack trace where the error occurred:
main() writwld2.c, 15

1. Source line at which the problem was detected.

2. Description of the problem and the name of the parameter that is
in error.

3. Value of the bad pointer.

4. Stack trace showing the function call sequence leading to the
error.

Repair
The simpler types of problems are most conveniently tracked in a
debugger by stopping the program at the indicated source line. You
should then examine the illegal value and attempt to see where it was
generated. Alternatively, you can stop the program at some point shortly
before the error and single-step through the code leading up to the
problem.

Note that wild pointers can also be generated when Insure++ has only
partial information about your program’s structure. For more information
about this topic, contact ParaSoft’s Quality Consultants.

IndexIndex

Symbols
%a, filename macro 165
%c, error category macro 174
%c, filename macro 165
%d, date macro 174
%D, filename macro 165
%d, filename macro 165
%f, filename macro 174
%F, full pathname macro 174
%h, hostname macro 174
%l, line number macro 174
%n, filename macro 165
%p, filename macro 165
%p, process ID macro 174
%R, filename macro 165
%r, filename macro 165
%t, time macro 174
%V, filename macro 165
%v, filename macro 165
.ins_orig file extension 177
.psrc options

inuse 114, 117
rename_files 104

.psrc options
listed 162

<argument #> 197
<return> 197
\x escape sequence 171
__INSURE__ 101, 193
__INSURE__ pre-processor macro

101
_Insure_checking_enable 101,

193
_Insure_leak_summary 196
_Insure_list_allocated_memor

y 103, 107, 194
_Insure_mem_info 102, 106, 194
_Insure_printf 194
_Insure_ptr_info 102, 106, 195
_Insure_trace_annotate 196
_Insure_trace_enable 109, 196
_Insure_trap_error 104, 111

Numerics
16-bit machines 47
32-bit machines 47
64-bit machines 47

A
%a, filename macro 165
adjacent memory blocks 36
Advanced Options

compile time 167–180
coverage_switches 83, 188
error_format 68, 69
Insra 96
leak_sort 82
leak_trace 82
report_file 67
runtime 181–190
signal_ignore 111
source_path 72, 188
stack_internal 109, 110
summarize 82
trace 109, 110
trace_banner 109
trace_file 109
tracing 108
unsuppress 77

Advanced options
suppress_output 76

alloc1.C 204
alloc2.C 205
Alpha, DEC 47
ANSI compilers 49
API

_Insight_mem_info 106
_Insure_list_allocated_me

mory 103, 107
_Insure_mem_info 102
_Insure_ptr_info 102, 106
349

_Insure_trace_annotate
109

_Insure_trace_enable 109
_Insure_trap_error 104

architecture (%a), in filenames 165
architectures 163
<argument #> 197
arguments

checking ranges 50
type checking 49–50

B
badcast.c 207
baddecl1.c 47, 209
baddecl2.c 47, 209
badform1.c 212
badform2.c 48, 213
badform3.c 214
badform4.c 216
badint.c 217
badparm1.c 220
badparm2.c 220
badparm4.c 222
bbbbbbbbb 192
big-endian 47
bitfields 53
black, color in Inuse 124
Block frequency 127
blue, color in Inuse 124
bounds overflow 35, 191
built-in

functions 170
types 170
variables 171

Bus error 111
byte swapping 47

C
%c, error category macro 174
%c, filename macro 165
calloc 43
Chaperon
350
about 52
bitfields 53
examples 56
requirements and limitations 53
states 55
with gdb 63

chunks, memory 81
client-server programming 68, 69
CodeWizard 31
colors, in Inuse 124
compatible (error sub-category)

212, 219
compilation time (%d), in filenames 165
compiler 167, 168

using multiple 163
compiler (%c), in filenames 165
compiler built-in

functions 170
types 170
variables 171

configuration files
insure 66

console 66
contact information for Parasoft 15
context based error suppression 74
copy, READ_UNINIT_MEM sub-cate-

gory 45
copybad.C 224
copydang.C 226
copyunin.C 228
copywild.c 230
Coverage analysis 146
coverage_switches, Advanced Op-

tions 83, 188
cross compiling 178

D
%d, date macro 174
%D, filename macro 165
%d, filename macro 165
dangling pointers 43–44, 240
data representations 47
date (%d), in error report banners 174
date and time, on error reports 69

dbx 103
deadcode.C 232
deadcode.c 233
debuggers

using Insure++ with 102
DEC Alpha 47
default report style 66
delmis1.C 235
delmis2.C 236
diagrams, memory overflow 191
directories

searching for source code 72
distributed programs 69
dynamic memory

common bugs 43
pointers to blocks 38

E
EINTR 51
emacs, customizing error reports for

68
enabling error codes 77
endian-ness 47
environment variables

in filenames 166
error category (%c), in error report ban-

ners 174
error codes 197–348

disabled 197
enabled 197
enabling 77
first occurrence 70
suppressing messages 73
suppressing messages by context

74
error report format

date (%d macro) 174
error category (%c macro) 174
filenames (%f macro) 174
hostname (%h macro)f 174
line number (%l macro) 174
pathname (%F macro)f 174
process ID (%p macro) 174
time (%t macro) 174
error summaries 77
error_format, Advanced Options

68, 69
errors

in system calls 51
examples

alloc1.C 204
alloc2.C 205
badcast.c 207
baddecl1.c 47, 209
baddecl2.c 47, 209
badform1.c 212
badform2.c 48, 213
badform3.c 214
badform4.c 216
badint.c 217
badparm1.c 220
badparm2.c 220
badparm4.c 222
chaperon 56
copybad.C 224
copydang.C 226
copyunin.C 228
copywild.c 230
deadcode.C 232
deadcode.c 233
delmis1.C 235
delmis2.C 236
expdangl.c 240
expnull.c 242
exprange.c 238
expucmp.c 246
expudiff.c 248
expuptr.c 244
expwld1.c 250
expwld2.c 251
freebody.c 253
freedngl.c 255
freeglob.c 257
freelocl.c 259
freeuptr.c 261
freewild.c 263
funcbad.c 265
funcnull.c 267
funcuptr.c 269
hello.c 34
351

hello2.c 36
hello3.c 38
hello4.c 43
leakasgn.c 274
leakfree.c 277
leakret.c 279
leakscop.c 281
noleak.c 116
parmdngl.c 286
parmnull.c 289
parmrnge.c 283
parmuptr.c 292
parmwld1.c 294
parmwld2.c 295
readdngl.c 300
readindx.c 298
readnull.c 302
readover.C 308
readovr1.c 304
readovr2.c 305
readovr3.c 306
readuni1.c 45, 311
readuni2.c 312
readuptr.c 315
readwld1.c 317
readwld2.c 318
retdngl.c 320
retfail.c 322
retinc.c 324
slowleak.c 113, 115
unuasign.c 327
unuvar.c 328
usererr.c 330
virtbad1.C 332
virtbad2.C 333
virtbad3.C 334
warn.c 272
writdngl.c 338
writindx.c 336
writnull.c 340
writover.c 342
writuptr.c 344
writwld1.c 346
writwld2.c 347

exception handlers 111
executable directory (%V), in filenames
352
165
executable name (%v), in filenames

165
execution time (%D), in filenames 165
expdangl.c 240
expnull.c 242
EXPR_NULL 210
exprange.c 238
expucmp.c 246
expudiff.c 248
expuptr.c 244
expwld1.c 250
expwld2.c 251
extensions, see file extensions

F
%F, full pathname macro 174
%f, filename macro 174
file extensions

.ins_orig 177
file permissions 51
filenames

architecture (%a macro) 165
compilation time (%d macro) 165
compiled with (%c macro) 165
executable directory (%V macro)

165
executable name (%v macro) 165
execution time (%D macro) 165
Insure++ version (%R macro) 165
Insure++ version (%r macro) 165
process ID (%p macro) 165
reports 67
unique numeric extension (%n

macro) 165
using environment variables 166

filenames (%f), in error report banners
174

files
limit on open 51
non-existent 51

first error 70
fork 68, 69
fprintf, see printf

free 43, 107
freebody.c 253
freedngl.c 255
freeglob.c 257
freeing memory 43
freeing memory twice 43
freeing static memory 43
freelocl.c 259
freeuptr.c 261
freewild.c 263
fscanf, see scanf
fseek 50
funcbad.c 265
funcnull.c 267
function

prototypes 49
functions

mismatched arguments 49–50
pointers to 36
return types, inconsistent 324

funcuptr.c 269

G
g++ 168
gcc 167
gdb 63
gets checking 49
global variables 35
GNU emacs, customizing error reports

for 68
green, color in Inuse 124

H
%h, hostname macro 174
handlers, signal 111
Heap history 119, 125
Heap layout 120, 129
hello.c 34
hello2.c 36
hello3.c 38
hello4.c 43
hostname 69
hostname (%h), in error report banners
174

I
I/O 48, 51, 111
ignoring return value 40
iic_warning 272
incompatible (error sub-category)

212, 219
incompatible declarations 47
inconsistent return types 324
.ins_orig file extension 177
insight 113
Insra 67, 178, 187

advanced options 96
troubleshooting 99

insure
runtime functions 102

Insure++
number of error messages 41
report file 67

insure++ command 113
Insure++ version (%R), in filenames

165
Insure++ version (%r), in filenames

165
_Insure_list_allocated_memor

y 103, 107
_Insure_mem_info 102, 106
_Insure_ptr_info 102, 106
_Insure_trap_error 104
int vs. long 172
intermittent errors 45
interrupted system calls 51
Inuse

black color in 124
blue color in 124
green color in 124
GUI 118
introduction 112
red color in 124
running 116–137
use of color in 124
yellow color in 124
353

inuse 114, 117

L
%l, line number macro 174
LEAK_ASSIGN 40
leak_combine, Advanced Options

82
LEAK_FREE 40
LEAK_RETURN 40
LEAK_SCOPE 40
leak_sort, Advanced Options 82
leak_trace, Advanced Options 82
leakasgn.c 274
leakfree.c 277
leakret.c 279
leaks, memory 38–42
leakscop.c 281
libraries

checking arguments to 50
line number (%l), in error report ban-

ners 174
little-endian 47
Loading a report file 153
local variables 35
long vs. int 172
look and feel 118

M
machine name 69
macros, pre-defined 101
malloc 35, 38, 43, 51
memcpy 304
memory

adjacent blocks 36
allocation 43
blocks containing pointers 40
chunks 81
corruption 34, 191
dynamically allocated 38
leaks 38–42
overflow 49, 191
running out of 41
354
shared 51
usage summary 80
using uninitialized 45

merging report files 67
mismatched arguments 49–50
multiple return types 324
multiprocessing 69

N
%n, filename macro 165
noleak.c 116
non-existent files 51
number of error messages 41

O
open file limit 51
Options used by TCA 160
orphaned memory 38–42
other (error sub-category) 212, 219
out of memory 41
outstanding, summarize keyword

82
overflow

bounds of object 35
diagrams 191
memory 49, 191

overwriting memory 35

P
%p, filename macro 165
%p, process ID macro 174
parallel processing 68, 69
Parasoft, contact information 15
PARM_BAD_RANGE

overflow diagrams 192
parmdngl.c 286
parmnull.c 289
parmrnge.c 283
parmuptr.c 292
parmwld1.c 294

parmwld2.c 295
pathname (%F), in error report banners

174
PC 47
permissions, file 51
personal computers 47
pointer (error sub-category) 219,

223
pointer reassignment 38
pointers 36

dangling 43–44, 240
function 36
not equivalent to integers 47
NULL 36
reusing free’d blocks 43
uninitialized 36
unrelated 36
wild 263

portability 207
porting 163
ppppppppp 192
pre-defined macros

__INSURE__ 101
pre-processor symbols 101
printf 212–216
printf checking 48
process ID 69
process ID (%p), in error report banners

174
process ID (%p), in filenames 165
prototypes 49
.psrc options

inuse 114, 117
rename_files 104

Q
Query 121

editor 134
evaluating 136

R
%R, filename macro 165
%r, filename macro 165
read, READ_UNINIT_MEM sub-cate-

gory 45
READ_OVERFLOW

overflow diagrams 191
READ_UNINIT_MEM

copy sub-category 45
read sub-category 45

readdngl.c 300
readindx.c 298
readnull.c 302
readover.C 308
readovr1.c 304
readovr2.c 305
readovr3.c 306
readuni1.c 45, 311
readuni2.c 312
readuptr.c 315
readwld1.c 317
readwld2.c 318
realloc 43
red, color in Inuse 124
rename_files 104
repeated errors 70
report summaries 77
report_file, Advanced Options 67
reports

default behavior 66
filename generation 67

retdngl.c 320
retfail.c 322
retinc.c 324
<return> 197
return values

checking automatically 51
ignoring 40

RETURN_FAILURE 44, 51, 243, 291
rrrrrrrrr 192
Running Insure++

with CodeWizard 31
with TCA 32

Running Inuse 116–137
running out of memory 41
Running TCA 139–161
355

S
scanf 212–216
scanf checking 48
search for source code 72
shared memory 35, 51
sign (error sub-category) 212, 219
signal handlers 111
signal_ignore, Advanced Options

111
Signals 111
16-bit machines 47
64-bit machines 47
sizeof operator 172
slowleak.c 113, 115
source directories 72
source_path, Advanced Options 72,

188
sprintf, see printf
sqrt 330
sscanf, see scanf
stack trace 66
stack_internal, Advanced Options

109, 110
states

chaperon 55
static variables 35
stderr 66
strings

errors using 44, 306
strncpy 44, 305
suffixes, see file extensions
summaries 77
Summarize Leaks 41
suppress_output, Advanced op-

tions 76
suppressing

error messages 73, 93
warnings 76

system calls 51
system name 69

T
%t, time macro 174
356
TCA 32
coverage analysis 146
display 152
introduction 138
loading a report file 153
options 160
tca.log 146, 147, 151, 158
test coverage data 142
using 139–161

tca.log 146, 147, 151, 158
32-bit machines 47
time (%t), in error report banners 174
time and date, on error reports 69
Time layout 120, 130
trace, Advanced Options 109, 110
trace_banner, Advanced Options

109
trace_file, Advanced Options 109
tracing 108

advanced options 108
output to a file 109
turning on 109
typical output 108

type promotion 172

U
uninitialized memory 45
union (error sub-category) 219
unrepeatable errors 45
unsuppress, Advanced Options 77
unuasign.c 327
unused variables 46
unuvar.c 328
Usage Summary 121, 131
usererr.c 330

V
%V, filename macro 165
%v, filename macro 165
variable declarations

incompatible 47
variables

uninitialized 45
unused 46

Viewing Source Files 95
virtbad1.C 332
virtbad2.C 333
virtbad3.C 334
void _Insure_trace_annotate

109

W
warn.c 272
warnings

suppressing 76
wild pointers 263
writdngl.c 338
writindx.c 336
writnull.c 340
writover.c 342
writuptr.c 344
writwld1.c 346
writwld2.c 347
wwwwwwwww 192

X
\x escape sequence 171

Y
yellow, color in Inuse 124
357

	Welcome!
	Insure++'s Breakthrough Technologies
	Pinpointing Programming Errors
	Checking Calls to Libraries
	Code Coverage Analysis with TCA
	Memory Optimization with Inuse
	Supported Platforms and Compilers
	New Features for Insure++ 6.1

	Insure++ Installation, Startup, and Licensing
	Step 1. Create a Directory for the Insure++ Distribution
	Step 2. Extract the CD-ROM Contents
	Step 3. Extract the Installation Script
	Step 4. Install Insure++
	Step 5. Post-Installation Configuration
	Step 6. Install a License
	Step 7. Set the PARASOFT Environment Variable
	Step 8. Modify Your PATH
	Step 9. Modify Your Environment
	Step 10. Running An Example

	Contacting Parasoft
	Running Insure++
	Step-by-Step Integration
	A Simple C Example: Sorting
	Compiling and Running Without Insure++
	Compiling Bubble1 With Insure++
	Running Bubble1 With Insure++
	Eliminating the Bug In Bubble1

	Using Insure++ With C++ Code
	Linking C++ Objects With Insure++
	A C++ Example: Memory Leak
	Linking Leak With Insure++
	Compiling and Running Leak With Insure++
	Eliminating the Bug In Leak

	Improving Insure++'s Compile-Time Performance
	Chaperon Quick Test (Linux x86 Only)
	Maintaining Both Normal and Insure++ Builds
	Common Insure++ Options
	Comprehensive Testing
	Preventing Errors With CodeWizard
	Optimizing Dynamic Memory With Inuse
	Running Inuse

	Analyzing Code Coverage With TCA
	Running TCA

	Insure++
	Memory Corruption
	Pointer Abuse
	Memory Leaks
	Should Memory Leaks Be Fixed?
	Finding All Memory Leaks

	Dynamic Memory Manipulation
	Strings
	Uninitialized Memory
	Unused Variables
	Data Representation Problems
	Incompatible Variable Declarations
	I/O Statements
	Mismatched Arguments
	Invalid Parameters In System Calls
	Unexpected Errors In System Calls

	Chaperon (Linux x86 Only)
	Requirements and Limitations
	Bitfields

	Symbols, Tracebacks, and Compilers
	System Calls
	Space

	Memory States and Access Accounting
	Examples
	WRITE_OVERFLOW
	READ_UNINIT_MEM
	FREE_DANGLING
	Summarize Leaks

	Using Chaperon With gdb

	Reports
	Default Behavior
	The Report File
	Customizing the Output Format
	Displaying Process Information
	Displaying the Time At Which the Error Occurred
	Displaying Repeated Errors
	Limiting the Number of Errors
	Changing Stack Traces
	Searching For Source Code
	Suppressing Error Messages
	Suppressing Error Messages By Context
	Suppressing Messages by File/Line
	Suppressing Other Warning Messages
	Enabling Error Messages
	Report Summaries
	The Bugs Summary
	The Leak Summaries
	The Coverage Summary

	Insra
	The Insra GUI
	Menu Bar
	Toolbar
	The Message Header Area
	The Status Bar

	Message Window
	Error Message

	Sending Messages To Insra
	Viewing and Navigating
	Selecting An Editor
	Deleting Messages
	Suppressing Messages
	The Suppressions Window Toolbar
	Editing Suppression Options
	Configuration (.psrc) Files
	The Kill Process

	Viewing Source Files
	Saving/Loading Messages To A File
	Help
	Setting Preferences
	Troubleshooting
	Insra Does Not Start Automatically
	Multiple Insra Users On One Machine
	Source Browsing Is Not Working

	Selective Checking
	Interacting with Debuggers
	Available Functions
	Sample Debugging Session

	Tracing
	Activating Tracing
	Directing Tracing Output To A File
	Example

	Signals
	Signal Handling Actions
	Which Signals Are Trapped?

	Working With Inuse
	Running the Inuse User Interface
	Compiling and Linking For Inuse
	Enabling Runtime Activity Display
	Running the Application
	The Inuse Display
	Is There a Bug In the Slowleak Program?
	Running Inuse
	The Basics
	The Inuse GUI
	Block Color In Inuse

	Selecting Reports
	The Heap History Report
	The Block Frequency Report
	The Heap Layout Report
	The Time Layout Report
	The Usage Summary Report
	Query Reports

	Working With TCA
	Coverage Analysis
	The Significance of Runtime Testing
	Using TCA
	Preparing your Code For Coverage Analysis
	An Example - Sorting Strings

	Analyzing Test Coverage Data
	Achieving 100% Test Coverage
	How to Use Coverage Analysis
	Step 1: Compile Time
	Step 2: Runtime
	Step 3: Using TCA to Display Information

	How Are Blocks Calculated?
	The TCA Display
	Loading A Report File
	Browsing The Source
	Reports
	Sorting
	Message
	Help

	Setting Preferences
	Compiling
	Running
	Running TCA

	Building a Test Suite

	Configuration Options
	Working on Multiple Platforms Or With Multiple Compilers
	Cross-Compiler Issues
	Option Values
	Filenames
	Example One
	Example Two

	Advanced Configuration Options Used by Insure++
	Options Used By Insra
	Options Used By TCA

	Memory Overflow
	Overflow Diagrams

	Insure++ API
	Control Routine
	Memory Block Description Routines
	Tracing

	Error Codes
	ALLOC_CONFLICT
	Memory Allocation Conflict
	Problem #1
	Problem #2
	Repair

	BAD_CAST
	Cast of Pointer Loses Precision
	Problem

	BAD_DECL
	Global Declarations Are Inconsistent
	Problem

	BAD_FORMAT
	Mismatch In Format Specification
	Problem #1
	Problem #2
	Problem #3
	Repair

	BAD_INTERFACE
	Function Declarations Conflict with Interface
	Problem

	BAD_PARM
	Mismatch In Argument Type
	Problem #1
	Problem #2
	Problem #3
	Repair

	COPY_BAD_RANGE
	Copying Pointer Which Is Out-of-Range
	Problem

	COPY_DANGLING
	Copying pointer which has already been freed
	Problem

	COPY_UNINIT_PTR
	Copying Uninitialized Pointer
	Problem

	COPY_WILD
	Copying Wild Pointer
	Problem

	DEAD_CODE
	Code Is Not Executed
	Problem #1
	Problem #2

	DELETE_MISMATCH
	Inconsistent Usage of Delete Operator
	Problem #1
	Problem #2
	Repair

	EXPR_BAD_RANGE
	Expression Exceeded Range
	Problem

	EXPR_DANGLING
	Expression Uses Dangling Pointer
	Problem
	Diagnosis (at runtime)
	Repair

	EXPR_NULL
	Expression Uses NULL Pointer
	Problem
	Diagnosis (at runtime)
	Repair

	EXPR_UNINIT_PTR
	Expression Uses Uninitialized Pointer
	Problem
	Diagnosis (at runtime)
	Repair

	EXPR_UNRELATED_ PTRCMP
	Expression Compares Unrelated Pointers
	Problem
	Diagnosis (at runtime)
	Repair

	EXPR_UNRELATED_ PTRDIFF
	Expression Subtracts Unrelated Pointers
	Problem
	Diagnosis (at runtime)
	Repair

	EXPR_WILD
	Expression Uses Wild Pointer
	Problem #1
	Problem #2
	Repair

	FREE_BODY
	Freeing Memory Block From Body
	Problem
	Diagnosis (at runtime)
	Repair

	FREE_DANGLING
	Freeing Dangling Pointer
	Problem
	Diagnosis (at runtime)
	Repair

	FREE_GLOBAL
	Freeing Global Memory
	Problem
	Diagnosis (at runtime)
	Repair

	FREE_LOCAL
	Freeing Local Memory
	Problem
	Diagnosis (at runtime)
	Repair

	FREE_UNINIT_PTR
	Freeing Uninitialized Pointer
	Problem
	Diagnosis (at runtime)
	Repair

	FREE_WILD
	Freeing Wild Pointer
	Diagnosis (at runtime)
	Repair

	FUNC_BAD
	Function Pointer Is Not a Function
	Problem
	Diagnosis (at runtime)
	Repair

	FUNC_NULL
	Function Pointer Is NULL
	Problem
	Diagnosis (at runtime)
	Repair

	FUNC_UNINIT_PTR
	Function Pointer Is Uninitialized
	Problem
	Diagnosis (at runtime)
	Repair

	INSURE_ERROR
	Internal Errors (Various)

	INSURE_WARNING
	Errors From iic_warning Calls
	Example
	Diagnosis (during compilation)
	Repair

	LEAK_ASSIGN
	Memory Leaked Due To Pointer Reassignment
	Problem
	Diagnosis (at runtime)
	Repair

	LEAK_FREE
	Memory Leaked Freeing Block
	Problem
	Diagnosis (at runtime)
	Repair

	LEAK_RETURN
	Memory Leaked By Ignoring Returned Value
	Problem
	Diagnosis (at runtime)
	Repair

	LEAK_SCOPE
	Memory Leaked Leaving Scope
	Problem
	Diagnosis (at runtime)
	Repair

	PARM_BAD_RANGE
	Array Parameter Exceeded Range
	Problem
	Diagnosis (at runtime)
	Repair

	PARM_DANGLING
	Array Parameter Is Dangling Pointer
	Problem
	Diagnosis (at runtime)
	Repair

	PARM_NULL
	Array Parameter Is NULL
	Problem
	Diagnosis (at runtime)
	Repair

	PARM_UNINIT_PTR
	Array Parameter Is Uninitialized Pointer
	Problem
	Diagnosis (at runtime)
	Repair

	PARM_WILD
	Array Parameter Is Wild
	Problem #1
	Problem #2
	Repair

	READ_BAD_INDEX
	Reading Array Out-of-Range
	Problem
	Diagnosis (at runtime)
	Repair

	READ_DANGLING
	Reading From a Dangling Pointer
	Problem
	Diagnosis (at runtime)
	Repair

	READ_NULL
	Reading NULL pointer
	Problem
	Diagnosis (at runtime)
	Repair

	READ_OVERFLOW
	Reading Overflows Memory
	Problem #1
	Diagnosis (at runtime)
	Problem #2
	Diagnosis (at runtime)
	Problem #3
	Diagnosis (at runtime)
	Problem #4
	Diagnosis (at runtime)
	Repair

	READ_UNINIT_MEM
	Reading Uninitialized Memory
	Problem #1
	Problem #2
	Repair

	READ_UNINIT_PTR
	Reading From Uninitialized Pointer
	Problem
	Diagnosis (at runtime)
	Repair

	READ_WILD
	Reading Wild Pointer
	Problem #1
	Problem #2
	Repair

	RETURN_DANGLING
	Returning Pointer To Local Variable
	Problem
	Diagnosis (during compilation)
	Repair

	RETURN_FAILURE
	Function Call Returned An Error
	Problem
	Diagnosis
	Repair

	RETURN_INCONSISTENT
	Function Has Inconsistent Return Type
	Problem
	Diagnosis (During compilation)
	Repair

	UNUSED_VAR
	Unused Variables
	Problem #1
	Problem #2
	Repair

	USER_ERROR
	User Generated Error Message
	Problem
	Diagnosis (at runtime)
	Repair

	VIRTUAL_BAD
	Error In Runtime Initialization Of Virtual Functions
	Problem
	Diagnosis (at runtime)
	Repair

	WRITE_BAD_INDEX
	Writing Array Out-of-Range
	Problem
	Diagnosis (at runtime)
	Repair

	WRITE_DANGLING
	Writing To a Dangling Pointer
	Problem
	Diagnosis (at runtime)
	Repair

	WRITE_NULL
	Writing To a NULL Pointer
	Problem
	Diagnosis (at runtime)
	Repair

	WRITE_OVERFLOW
	Writing Overflows Memory
	Problem
	Diagnosis (at runtime)
	Repair

	WRITE_UNINIT_PTR
	Writing To An Uninitialized Pointer
	Problem
	Diagnosis (at runtime)
	Repair

	WRITE_WILD
	Writing To a Wild Pointer
	Problem #1
	Problem #2
	Repair

	Index

